神经网络与深度学习 知识总结(二)

深度学习的必要性与平台工具

  • 全连接网络问题:全连接网络存在链接权过多、计算慢、难收敛、易过拟合等问题。如处理1000×1000图像时,隐含层有1M个节点,输入到隐含层间参数达1×10121×10^{12}1×1012数量级。可通过减少权值连接(局部连接网络)和信息分层处理解决。

  • 深度学习平台简介

  • PyTorch基本概念

    • 张量(Tensor)
    • 计算图
    • 使用tensor表示数据,Dataset和DataLoader读取数据,变量存储神经网络权值,通过构建计算图进行计算,代码运行时执行计算图。

卷积神经网络基础

  • 典型任务:图像分类、目标定位、语义分割等。
  • 基本概念
    • 特征提取:模拟人类视觉感知,通过卷积对原始图像滤波
    • 填充:增加矩阵大小
    • 步长:控制卷积操作的间隔
    • 多通道卷积:处理RGB等多通道图像
    • 池化:统计特征减少特征数量
  • 网络结构:卷积神经网络由卷积层、下采样层和全连接网络构成。
  • 学习算法:
    • 前向传播定义了卷积层和池化层的计算过程

    • 误差反向传播(BP)算法用于更新网络参数,

      • 经典BP算法

      • 卷积神经网络中不同层之间误差回传的计算方法

经典卷积神经网络

  • LeNet - 5网络:由Yann LeCun等人提出,用于手写字符识别。

    • 网络结构包含卷积层、池化层和全连接层
    • 与现在网络的区别
      • 卷积时不进行填充
      • 使用平均池化而非最大池化
      • 用Sigmoid或tanh而不是ReLU作为激活函数
      • 层数浅、参数少
  • AlexNet

    • 网络有8层可学习层,采用最大池化、ReLU激活函数(用于卷积层与全连接层之后),网络规模大参数多,出现“多个卷积层 + 一个池化层”结构,还通过数据增强、Dropout(全连接层之后的Dropout层,以概率p随机关闭激活函数)、双GPU策略等改进提升性能。
  • VGG - 16:研究卷积网络深度对精度的影响,网络结构规整,使用小卷积核(3×3),参数数量约1.38亿,随着网络深入,高和宽衰减,通道数增多。

  • 残差网络:针对非残差网络梯度消失问题提出,引入残差块,通过捷径连接让网络学习残差,训练更深的网络变得更容易,在CIFAR - 10实验中表现良好。

常用数据集

  • MNIST数据集:手写数字图片
  • Fashion-MNIST数据集:手写数字图片
  • CIFAR-10数据集:10个类的彩色图片
  • PASCAL VOC数据集:目标分类检测分割
  • MS COCO:目标分类检测分割语义标注,80类
  • ImageNet数据集
  • ISLVRC 2012子数据集
  • 谷歌JFT-300M
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值