struts动态form

config.xml里
动态的ActionForm类

xml 代码
  1. <form-bean name="dynaForm" type="org.apache.struts.action.DynaActionForm">  
  2. <form-property name="fn" type="java.lang.String" />  
  3. form-bean>  

Action execute里

java 代码
  1. DynaActionForm df = (DynaActionForm)form;    
  2. String fn = df.getString("fn");  

jsp里

java 代码
  1. fn:
内容概要:本书《Pattern Recognition and Machine Learning》系统阐述了模式识别与机器学习领域的基本理论与方法,强调概率模型与贝叶斯推理的核心地位。书中涵盖的主要内容包括概率分布、线性回归与分类、神经网络、核方法、支持向量机、图模型、EM算法、变分推断、蒙特卡洛采样方法(如Metropolis-Hastings和混合蒙特卡洛)以及连续隐变量模型(如PCA与独立成分分析)等。全书注重概念与原理的深入解释,并融合大量实例与图形辅助理解,同时提供配套软件资源用于实践。; 适合人群:具备一定数学基础(如线性代数、概率统计)和编程能力,面向高年级本科生、研究生及从事机器学习研究与应用的科研人员;尤其适合希望从理论层面深入理解主流机器学习算法的学习者。; 使用场景及目标:①掌握机器学习中经典算法的概率建模思想与数学推导过程;②理解图模型中的条件独立性判断、因子分解、消息传递机制;③学习复杂分布下的近似推断技术(如变分法与MCMC)及其应用场景;④为后续研究深度学习、强化学习或相关领域打下坚实的理论基础。; 阅读建议:此书理论性强,建议结合练习题进行深入学习,优先完成带“www”标记的在线习题以检验理解程度。对于重点章节(如第2章概率分布、第8章图模型、第11章蒙特卡洛方法),应仔细推导公式并尝试复现算法,配合Matlab工具包实践可显著提升学习效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值