-
题目描述:
-
HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天JOBDU测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。你会不会被他忽悠住?
-
输入:
-
输入有多组数据,每组测试数据包括两行。
第一行为一个整数n(0<=n<=100000),当n=0时,输入结束。接下去的一行包含n个整数(我们保证所有整数属于[-1000,1000])。
-
输出:
-
对应每个测试案例,需要输出3个整数单独一行,分别表示连续子向量的最大和、该子向量的第一个元素的下标和最后一个元素的下标。若是存在多个子向量,则输出起始元素下标最小的那个。
样例输入:
3 -1 -3 -2 5 -8 3 2 0 5 8 6 -3 -2 7 -15 1 2 2 0
样例输出:
-1 0 0 10 1 4 8 0 3【解题思路】这应该是一个非常经典的问题了,看到这种最优化问题,而且各结果之间具有一定的联系的题型,第一反应就是dp问题,因为一个数我们能确定,两个数的话我们可以根据一个数确定,同理第三个数出现后我们能根据前面的数确定。用一个数组记录到当前元素为止的最大和,并记录其起始元素编号。
AC code:
#include <cstdio> #include <vector> using namespace std; int main() { int n; while(scanf("%d",&n) && n) { vector<int> sum(n),idx(n); int tt,allsum,reidx,endidx; scanf("%d",&tt); sum[0]=tt; idx[0]=0; for(int i=1;i<n;++i) { scanf("%d",&tt); if(sum[i-1]<0) { sum[i]=tt; idx[i]=i; }else { sum[i]=sum[i-1]+tt; idx[i]=idx[i-1]; } } allsum=sum[0]; reidx=0; endidx=0; for(int i=1;i<n;++i) { if(sum[i]>allsum) { allsum=sum[i]; reidx=idx[i]; endidx=i; } } printf("%d %d %d\n",allsum,reidx,endidx); } return 0; } /************************************************************** Problem: 1372 User: huo_yao Language: C++ Result: Accepted Time:450 ms Memory:1836 kb ****************************************************************/
题目链接:http://ac.jobdu.com/problem.php?pid=1372九度-剑指Offer习题全套答案下载:http://download.csdn.net/detail/huoyaotl123/8276299