任意数据无损压缩算法

本文介绍了一种能处理任意二进制状态数据的无损压缩算法,利用25*25矩阵、障碍格、计数路径等元素构建压缩模型。通过特定的计数路径和计数器设计,确保数据的有效压缩和解压效率。采用洗牌策略减少二义性,通过优化计数器值的二进制表示简化数据。经过150次压缩,能将1200位数据压缩到497位,同时保持数据无损。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

任意二进制状态数据都能无损压缩,其压缩模型由以下组成:25*25矩阵、障碍格、计数路径、被压缩数据、洗牌、计数器、简化数据等等,建模见(图1),

 其中屏蔽掉120个元素(取名:障碍格,在图3中用2表示),障碍格在模型中是固定的,计数器不会对其计数,

 

计数路径见(图2-1——图2-4),计数器路径分:A、B、C、D四组,每组25个,分别取名:A-0、A-1、A-2.......A-24,B-0、B-1、B-2.......B-24,C-0、C-1、C-2.......C-24,D-0、D-1、D-2.......D-24,共:4*25=100个计数路径,每个计数路径上面有25个元素。每个元素会被计数4次,计数路径和障碍格的合理布局能有效的提高解压效率和解压时的二义性问题。计数路径举例说明:图3上坐标X=11,Y=12元素的计数路径A-8、B-16、C-17、D-15。

MATLAB可以用于实现多种图像无损压缩算法。下面将为你简单介绍几种常见的无损压缩技术以及如何在MATLAB中应用它们: ### 1. **Huffman 编码** 这是一种基于统计概率的编码方法,它通过创建变长字典来表示数据中最常出现的信息片段(如像素值)。对于高频率出现的数据给予更短长度的二进制字符串。 **Matlab 实现步骤:** ```matlab % 将图像转换成灰度图并读取其原始大小和颜色信息 I = imread('example.png'); grayImage = rgb2gray(I); originalSize = whos('grayImage'); % 使用huffmandict函数生成霍夫曼树及对应的codebook (需要 Communications Toolbox) [symbols, prob] = imhist(grayImage); % 获取每个强度等级的概率分布 [dict, avglen] = huffmandict(0:255, prob); % 对图像矩阵进行编码,并计算压缩后的存储需求 compIma = huffmanenco(double(grayImage(:)), dict); compressedSize = length(compIma)/8; disp(['Original Size in Bytes:', num2str(originalSize.bytes)]); disp(['Compressed Data Length in Bits:', num2str(length(compIma))]); ``` ### 2. **LZW 压缩** Lempel-Ziv-Welch是一种广泛使用的通用型无损压缩算法,在GIF文件格式里尤为常见。它可以处理任意类型的输入流而无需事先了解内容特性。 **Matlab 实现示例:** 由于 MATLAB 内置了对 GIF 文件的支持,默认即采用 LZW 算法保存图形,因此可以直接使用 `imwrite` 函数完成此操作: ```matlab imwrite(I,'output.gif','gif') ``` 此外还有其他一些高级选项可用于控制压缩比等参数设置; ### 3. **PNG 图像格式** PNG 是一种支持透明通道并且自带高效压缩机制的标准图像格式,非常适合于网络传输与展示高质量图片资源。内部采用了 DEFLATE 流行算法结合过滤预测策略来进行最佳化打包处理. **Matlab 中保存 PNG 文件非常简便:** ```matlab imwrite(I,'output.png') % 默认会启用最高的质量级别 ``` 以上就是关于利用MATLAB工具箱内置功能或自定义脚本程序实现不同类型无损压缩的基本思路概述啦!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值