HashMap底层原理实现

简述

在jdk1.7之前,使用数组加链表的形式组成的

1.8之后新增红黑树的组成结构,链表大于8且容量大于64的时候转为红黑树结构

数组中的元素叫做hash桶

组成结构图如下:

img

每个hash桶中包含四个字段,hash,key,value,next

为什么会加入红黑树?

一旦链表过长,会严重影响HashMap的性能,红黑树具有快速增删改查的特点,可以有效解决链表过长时间操作比较慢的问题

为什么加入红黑树而不选择AVL树(完全平衡二叉树)

为什么HashMap使用红黑树而不使用AVL树-感谢Running-Waiting

在CurrentHashMap是加锁的(读写锁),如果冲突就会等待,插入时间过长就会导致等待时间过长,红黑树相对AVL插入更快

红黑树和AVL树都是最常用的平衡二叉搜索树,它们的查找、删除、修改都是O(lgn) time

AVL树和红黑树有几点比较和区别:
(1)AVL树是更加严格的平衡,因此可以提供更快的查找速度,一般读取查找密集型任务,适用AVL树。
(2)红黑树更适合于插入修改密集型任务。
(3)通常,AVL树的旋转比红黑树的旋转更加难以平衡和调试。

总结
(1)AVL以及红黑树是高度平衡的树数据结构。它们非常相似,真正的区别在于在任何添加/删除操作时完成的旋转操作次数。
(2)两种实现都缩放为a O(lg N),其中N是叶子的数量,但实际上AVL树在查找密集型任务上更快:利用更好的平衡,树遍历平均更短。另一方面,插入和删除方面,AVL树速度较慢:需要更高的旋转次数才能在修改时正确地重新平衡数据结构。
(3)在AVL树中,从根到任何叶子的最短路径和最长路径之间的差异最多为1。在红黑树中,差异可以是2倍。
(4)两个都给O(log n)查找,但平衡AVL树可能需要O(log n)旋转,而红黑树将需要最多两次旋转使其达到平衡(尽管可能需要检查O(log n)节点以确定旋转的位置)。旋转本身是O(1)操作,因为你只是移动指针。

HahsMap从JDK1.7到1.8

JDK1.7

JDK1.7 HashMap的扩容导致get的时候出现死循环-[[qq_38229543]

如果是在单线程下使用HashMap,自然是没有问题的,如果后期由于代码优化,这段逻辑引入了多线程并发执行,在一个未知的时间点,会发现CPU占用100%,居高不下,通过查看堆栈,你会惊讶的发现,线程都Hang在hashMap的get()方法上,服务重启之后,问题消失,过段时间可能又复现了

头插法(首部倒入排序)发生了死循环

这里写图片描述

总结
所以在并发的情况,发生扩容时,可能会产生循环链表,在执行get的时候,会触发死循环,引起CPU的100%问题,所以一定要避免在并发环境下使用HashMap

JDK1.8

尾插发(使用尾部顺序插入)

同样会多线程会死锁(与之前JDK1.7不一样)-树化过程长度为8和退树化长度为6过程

至于为什么是8和6呢

避免频发的触发类型转换带来的性能开销

HashMap没有对多线程的场景下做任何的处理,不用说别的,就两个线程同时put,然后冲突了,两者需要操作一个链表/红黑树,这肯定就会有错误发生,所以HashMap是线程不安全的。

参考:

JDK1.8前多线程并发下HashMap会发生死循环

HashMap在jdk1.8也会出现死循环的问题(实测)

HashMap在jdk1.8中也会死循环

JDK8中HashMap依然会死循环!

什么可以解决线程不安全的问题呢?哪个更优秀?

HashTable

底层数组+链表实现,无论key还是value都不能为null,线程安全,实现线程安全的方式是在修改数据时锁住整个HashTable,效率低

ConcurrentHashMap
  • 底层采用分段的数组+链表实现,线程安全

  • 通过把整个Map分为N个Segment,可以提供相同的线程安全,但是效率提升N倍,默认提升16倍。(读操作不加锁,由于HashEntry的value变量是 volatile的,也能保证读取到最新的值。)

  • Hashtable的synchronized是针对整张Hash表的,即每次锁住整张表让线程独占,ConcurrentHashMap允许多个修改操作并发进行,其关键在于使用了锁分离技术

  • 有些方法需要跨段,比如size()和containsValue(),它们可能需要锁定整个表而而不仅仅是某个段,这需要按顺序锁定所有段,操作完毕后,又按顺序释放所有段的锁

  • 扩容:段内扩容(段内元素超过该段对应Entry数组长度的75%触发扩容,不会对整个Map进行扩容),插入前检测需不需要扩容,有效避免无效扩容

    加载因子为什么是0.75

    平衡效率和空间上的开销

    0.75>0.5

    更难达到扩容的门槛,扩容的概率下降,对应的占用空间就会比较小,发生hash冲突的可能性就会提升,因此需要更复杂的数据结构来存储元素,这样对元素的操作时间就会增加,效率降低;

    0.75<1

    扩容的门槛比较低,会占用更多的空间,存储比较稀疏,hash碰撞概率就会比较小,操作性就更高。

    HashMap的容量是2的幂次方,这样容量和加载因子相乘会得到一个整数。

    HashMap三种重要方法

    查询

    当hash冲突时(HashMap使用拉链法解决hash冲突具体参考:什么是拉链法)我们需要判断key值是否相等,才能确定是否是我们想要的元素

    新增:

    1.判断hash表是否为空-是扩容,否2

    2.根据key得到下标,在table中有没有这个下标直接赋值,有直接插入,没有3

    3.判断key值是否相等,是,直接赋值(更新操作)否4

    4.判断是否是红黑树,是,红黑树插入值,否5

    5.遍历链表插入,检查节点大于8,大于8红黑树插入,否链表插入

    6.插入的值,检查hash表是否大于threshold(加载因子(loadFactor*capacity)),是扩容,否结束。

    扩容:

    不像JDK1.7重新计算每个元素的hash值,JDK1.8通过高位运算(e.hash&oldCap)来确定元素是否移动

PS

面试必备:HashMap、Hashtable、ConcurrentHashMap的原理与区别猿人谷

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值