汤宪宇
码龄15年
关注
提问 私信
  • 博客:457,728
    457,728
    总访问量
  • 46
    原创
  • 767,951
    排名
  • 1,019
    粉丝
  • 33
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2009-08-06
博客简介:

tangxianyu的博客

查看详细资料
个人成就
  • 获得681次点赞
  • 内容获得251次评论
  • 获得3,623次收藏
  • 代码片获得8,948次分享
创作历程
  • 8篇
    2023年
  • 5篇
    2022年
  • 8篇
    2021年
  • 8篇
    2020年
  • 18篇
    2019年
  • 1篇
    2018年
成就勋章
TA的专栏
  • 机器学习
    6篇
  • 嵌入式
    5篇
  • #基础知识
    4篇
  • 基于信息论特征选择算法
    4篇
  • #信息论算法实现
    2篇
兴趣领域 设置
  • 人工智能
    聚类迁移学习
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

184人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

数独四宫格,适合于幼儿园以及小学儿童使用

发布资源 2023.07.08 ·
xlsx

数独九宫格,excel自动生成版

发布资源 2023.07.08 ·
xlsx

Datawhale统计学习方法打卡Task05

分类决策树模型是一种描述对实例进行分类的树形结构。决策树由节点(node)和有向边(directed edge)组成。结点有两种类型:内部结点和叶节点。内部结点表示一个特征或属性,叶节点表示一个类。用决策树分类,从根节点开始,对实例的某一特征进行测试,根据测试结果,将实例分配到子节点;这是每一个子节点对应着该特征的一个取值。如此递归的对顺利进行测试并分配,指导达到叶节点。最后将实例分到叶节点的类中。
原创
发布博客 2023.02.27 ·
951 阅读 ·
0 点赞 ·
1 评论 ·
2 收藏

Datawhale统计学习方法打卡Task04

学习教材《(第二版)》李航学习内容:第4章 朴素贝叶斯法。
原创
发布博客 2023.02.24 ·
836 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

Datawhale统计学习方法打卡Task03

学习教材《(第二版)》李航学习内容:第3章 K近邻法。
原创
发布博客 2023.02.21 ·
606 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

Datawhale统计学习方法打卡Task02

学习教材《统计学习方法(第二版)》李航学习内容:第1章 统计学习及监督学习概论。
原创
发布博客 2023.02.19 ·
402 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

DataWhale-统计学习方法打卡Task01

统计学习方法(第2版) by...李航 (z-lib.org).pdf https://www.aliyundrive.com/s/maJZ6M9hrTe 点击链接保存,或者复制本段内容,打开「阿里云盘」APP ,无需下载极速在线查看,视频原画倍速播放。
原创
发布博客 2023.02.15 ·
486 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

【教学赛】金融数据分析赛题1:银行客户认购产品预测(0.9676)

本人的方法只获得了0.9676的结果,希望您能在本人的程序基础上进行改进,以得到更佳的效果。如果有了更好的方法,欢迎在留言区告诉我,相互讨论。
原创
发布博客 2023.01.16 ·
4996 阅读 ·
13 点赞 ·
2 评论 ·
89 收藏

对于TP, TN, FP, FN, Pre, Recall的举例

FN为预测为0,但是预测错了,真值为1的值,即图中浅绿色底色的值,共有2个;FN为预测为1,但是预测错了,真值为0的值,即图中浅绿色底色的值,共有4个;FP为预测为1,但是预测错了,真值为0的值,即图中红色底色的值,共有4个;FP为预测为0,但是预测错了,真值为1的值,即图中红色底色的值,共有2个;TP为预测为0,真值也为0的值,即图中深绿色底色的值,共有4个;TP为预测为1,真值也为1的值,即图中深绿色底色的值,共有5个;TN为预测为0,真值也为0的值,即图中橙色底色的值,共有4个;
原创
发布博客 2023.01.12 ·
1403 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

【转载】TF-IDF的理解与计算

TF-IDF 实际上是两个词组Term Frequency和Inverse Document Frequency的总称,两者缩写为 TF 和 IDF,分别代表了词频和逆向文档频率。
转载
发布博客 2023.01.01 ·
692 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

2020CCF大数据与计算智能大赛-路况状态时空预测(1.数据分析及下载)

目录1.项目简介1.1赛制规则1.2数据与测评2.数据预处理2.1 原始道路特征attr.txt: 2.2 道路拓扑特征topo.txt:2.3 道路数据201907xx.txt:2.4 测试集数据20190801_testdata.txt:比赛链接:https://www.datafountain.cn/competitions/466赛道名:路况状态时空预测背景:移动互联网时代的到来让所有移动设备的持有者都可以成为道路通行能力的描绘者, 滴滴平台收集了海量的高质量司乘轨迹数据, 可以对实时道路拥堵状况有
原创
发布博客 2022.06.07 ·
927 阅读 ·
8 点赞 ·
3 评论 ·
5 收藏

一文看懂数据分析各种图形(箱型图、数据分布图、线性回归图、相关关系图)(阿里天池)

1、箱形图1.1箱型图的定义箱型图(Boxplot)也称箱须图(Box-whiskerPlot)、盒式图或箱线图,是利用数据中的五个统计量:最小值、上四分位数、中位数、下四分位数与最大值来描述数据的一种统计图。它能够直观地显示数据的异常值,分布的离散程度以及数据的对称性。中位数:数据按从小到大顺序排列后的处于中间位置的值,如果序列是偶数个,则是中间两个数的平均值;下四分位数Q1:位于数据序列25%位置处的数;上四分位数Q3:位于数据序列75%位置处的数;四分位间距IQR:..
原创
发布博客 2022.04.18 ·
56281 阅读 ·
53 点赞 ·
0 评论 ·
481 收藏

基于PCA的故障诊断方法(matlab)

1. PCA原理分析PCA的原理主要是将原始数据进行降维。其具体工作原理参照:CodingLabs - PCA的数学原理2. 数据预处理训练数据集(只有正样本)为维数据,即有n个采样值,每个采样值有m个特征。2.1 数据归一化将数据X针对每个特征归一化为均值为0,均方根为1的数据。其中:3. PCA降维3.1 首先求取协方差矩阵协方差矩阵的公式为:计算出来的协方差矩阵为特征m*m维矩阵。3.2 求取特征值和特征向量求取协方差矩阵R的特征值.
原创
发布博客 2022.04.13 ·
15073 阅读 ·
29 点赞 ·
24 评论 ·
241 收藏

机器学习--周志华课后作业---第3章 线性模型

3.1 试分析在什么情况下,在以下式子中不比考虑偏置项b。答:在样本xxx中有某一个属性xix_{i}xi​为固定值时。那么此时wixi+bw_{i}x_{i}+bwi​xi​+b等价于偏置项,此时wixi+bw_{i}x_{i}+bwi​xi​+b与bbb等价。3.2 试证明,对于参数 ,对率回归(logistics回归)的目标函数(3.18)是非凸的,但其对数似然函数(3.27)是凸的。答:3.18:y=11+e−(wTx+b)y=\frac{1}{1+e^{-(w^{T}x+b)}}y=1
原创
发布博客 2022.02.28 ·
1454 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

机器学习--周志华课后作业---第2章 模型评估与选择

2.1 数据集包含 1000 个样本,其中 500 个正例、 500 个反例,将其划分为包含 70% 样本的训练集和 30% 样本的测试集用于留出法评估,估算有多少种划分方式。答:排列组合问题。训练/测试集的划分要尽可能保存数据分布一致那么训练集中应该包括 350 个正例和 350 个反例,剩余的作测试集,那么划分方式应该有 (x500350)2(x_{500}^{350})^{2}(x500350​)2种。2.2 数据集包含 100 个样本,其中正反例各一半,假定学习算法所产生的模型是将新
原创
发布博客 2022.02.28 ·
1685 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

手把手教你,通过HAL库实现STM32的超声波测距--以SR-04为例

目录0、SR-04基本原理1、准备工作2、连线3、STM32CUBEMX设置3.1新建工程3.2芯片通用设置3.3定时器捕获设置​3.4其他设置3.5生成工程4、程序完善4.1完善打印输出函数4.2完善tim.c4.3完善gpio.c4.4完善main函数5、总结0、SR-04基本原理声波遇到障碍物会反射,而声波的速度已知,所以只需要知道发射到接收的时间差,就能轻松计算出测量距离,再结合发射器和接收器的距离,就能算出障碍物的...
原创
发布博客 2021.11.24 ·
12079 阅读 ·
35 点赞 ·
35 评论 ·
289 收藏

手把手教你,通过HAL库实现STM32的ADC的DMA读取

1.CUBEMx设置1.1新建工程1.2芯片配置1.2.1时钟配置在1处输入72按回车,系统会自动将其他的时钟调整为相对应的配置。1.2.2系统调试配置为了使生成的程序可以进行在线调试,重新点击1处的Pinout&Configuration,点击SYS,在Debug处点击Serial Wire。1.3 ADC配置此处我们将14路ADC1内的14路ADC都进行AD采集并进行配置。此处我们先点击Analog下面的ADC1,然后将IN0~IN14前面的√全...
原创
发布博客 2021.11.05 ·
23127 阅读 ·
53 点赞 ·
14 评论 ·
236 收藏

手把手教你,通过HAL库实现MODBUS从机程序编写与调试(三)---MODBUS SLAVE程序移植

目录1、STM32CubeMX操作2、程序完善3、MODBUS SLAVE程序的移植3.1程序下载和复制3.2程序添加,编译3.3接口替换3.4修改main.c主函数4、MODBUS调试5. 总结1、STM32CubeMX操作手把手教你,通过HAL库实现MODBUS从机程序编写与调试(一)-----STM32CubeMX操作篇_tangxianyu的博客-CSDN博客2、程序完善手把手教你,通过HAL库实现MODBUS从机程序编写与调试(二)...
原创
发布博客 2021.11.04 ·
4229 阅读 ·
12 点赞 ·
18 评论 ·
70 收藏

MODBUS(RTU).zip

发布资源 2021.11.04 ·
zip

手把手教你,通过HAL库实现MODBUS从机程序编写与调试(二)-串口及定时函数的完善

2、程序完善2.1完善usart.h在usart.h内的/* USER CODE BEGIN Private defines *//* USER CODE END Private defines */内部插入我们定义的变量,这样在重新更新STM32CubeMX的时候,我们增加的程序不会被删除掉。首先定义一个UART_BUF结构体,里面包含接收的缓冲数据和大小,以及发送的数据集大小。然后定义一个串口的初始化函数E_USART_INIT来对定义的UART_BUF进行初始化。定义一.
原创
发布博客 2021.11.04 ·
6029 阅读 ·
14 点赞 ·
16 评论 ·
84 收藏
加载更多