深度学习入门
文章平均质量分 89
迪哥有点愁了
深度学习爱好者
展开
-
深度学习入门课程学习笔记06 反向传播
本篇学习笔记对应深度学习入门课程 第七课博客地址:http://blog.csdn.net/tangyudi 欢迎转载反向传播:咱们在之前的课程讲了一系列的前向传播的知识点,前向传播也就是从输入到最终计算出LOSS值这一系列过程,那么这节课咱们要讲一个更重要的知识点也就是反向传播。反向传播最直观的意思就是说咱们要从LOSS值入手一步步的往回看,看什么呢?就是要看咱们的每一个权重参数对最终的LOSS值原创 2016-08-07 22:09:30 · 1888 阅读 · 2 评论 -
深度学习入门课程学习笔记02 得分函数
本篇学习笔记对应深度学习入门课程 第三课 得分函数前向传播之-得分函数 剧透:深度学习必备的两个大知识点分别是前向传播和反向传播啦,这里节课我们会先着手把前方传播的所涉及的所有知识点搞定!我相信这部分对于咱们即便没有什么基础的同学来说也是很容易理解的。 得分函数:这个就是咱们这节课最核心的一个问题啦。什么叫得分函数呢?下面这个图就给了我们一个最直接的答案! 得分函数的目的:我们要做的原创 2016-07-31 22:22:34 · 4604 阅读 · 1 评论 -
深度学习入门课程学习笔记03 损失函数
本篇学习笔记对应深度学习入门课程 第四课 损失函数前向传播之-损失函数 损失函数:在前面一节咱们介绍了得分函数,就是给定一个输入,对于所有类别都要给出这个输入属于该类别的一个分值,如上图所示,对于每一个输入咱们都有了它属于三个类别的得分,但是咱们光有这个得分却不知道如何来评判现在的一个分类效果,这节课咱们就要用损失函数来评估分类效果的好坏,而且不光是好坏还要表现出来有多好有多坏! 我们接下来就原创 2016-08-01 23:39:45 · 5878 阅读 · 3 评论 -
深度学习入门课程学习笔记04 softmax分类器
本篇学习笔记对应深度学习入门课程 第五课 softmax分类器简单理解欢迎转载 博客地址:http://blog.csdn.net/tangyudi前向传播之-softmax softmax:这个分类器可以说是咱们深度学习领域最常见的一个分类器了,如果大家对逻辑回归有基础的话那么这个softmax分类器可以当成一个多分类的逻辑回归。 sigmoid:上图就是咱们这个sigmoid函数了,这个函原创 2016-08-02 22:12:18 · 4730 阅读 · 1 评论 -
深度学习入门课程学习笔记05 最优化
本篇学习笔记对应深度学习入门课程 第六课 最优化问题欢迎转载 博客地址:http://blog.csdn.net/tangyudi前向传播之-最优化通过对之前课程的学习,我们已经能够对于一个输入数据得出它的最终的一个LOSS值,那么下面就该咱们如何去找到一个最优的参数矩阵,使得最终的LOSS值达到一个最小的范围。这就引入了咱们的最优化问题。下面咱们通过几种解决方案来详细讨论如何处理这个最优化的问题首原创 2016-08-04 22:50:31 · 1883 阅读 · 0 评论 -
深度学习入门课程笔记 神经网络
本篇学习笔记对应深度学习入门课程 第八课 神经网络博客地址:http://blog.csdn.net/tangyudi 欢迎转载神经网络:首先咱们先来回顾一下之前课程所讲前向传播和反向传播知识点,前往传播 就是从输入X到最终得到LOSS值的过程,反向传播 是从最终的LOSS值经过梯度的传播最终计算出权重矩阵W中所有参数对于最终的LOSS值影响大小,更新参数 就是通过不同权重参数对终LOSS值的影响来原创 2016-08-14 13:54:19 · 3377 阅读 · 2 评论 -
深度学习入门视频课程学习笔记01
本篇学习笔记对应深度学习入门课程 第二课(一)深度学习问题面临的挑战首先就由一只小猫带咱们走进深度学习的世界吧! 对于一个输入样本来说,深度学习和机器学习有着相同的目的,就是要把这个样本进行最准确的分类。咱们从肉眼看很容易这是一只猫,因为我们有着这么多年的积累常识嘛!但是计算机可不这么聪明一眼就能看得出来,在计算机中,一个图像是由像素点所构成的。这里可能有同学对于计算机视觉不是很了解,我简单的介原创 2016-07-30 19:10:26 · 3867 阅读 · 2 评论 -
新手如何快速入门深度学习
如何快速入门深度学习本篇学习笔记对应深度学习入门视频课程博客地址:http://blog.csdn.net/tangyudi 欢迎转载深度学习入门必备基础避开常见误区学习路线图干货分享深度学习必备基础 深度学习发展至今已然有几个年头了,上个世纪九十年代的美国银行率先使用深度学习技术做为手写字体识别,但深度学习的惊艳登场并没有留住它一时的辉煌, 直到2012年深度学习这个领域才开始渐入原创 2016-07-27 14:13:00 · 7827 阅读 · 7 评论