洛谷 P1387 最大正方形

洛谷 P1387 最大正方形
自己一开始用了洛谷题解中所讲的写了下,通过了。后面再根据自己对题目的理解,再写了一个,也差不多。

下面是一个按照别人题解写的

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int n,m,ans;
int f[200][200],a[200][200];
int main(){
    scanf("%d%d",&n,&m);
    for(register int i=1;i<=n;++i)
        for(register int j=1;j<=m;++j)
            scanf("%d",&a[i][j]);
    for(register int i=1;i<=n;++i)
        for(register int j=1;j<=m;++j){
        if(a[i][j]) f[i][j]+=min(f[i-1][j-1],min(f[i][j-1],f[i-1][j]))+1;
        //如果当前位置为1,则将上,左,左上三个位置的值取最小,并且加1
            ans=max(ans,f[i][j]);
            //取一个max
        }
    printf("%d",ans);
    return 0;
}

下面是自己想的一种,跟上面的思路差不多。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int n,m,ans;
int f[200][200],l[200][200],h[200][200],a[200][200];
int main(){
    scanf("%d%d",&n,&m);
    for(register int i=1;i<=n;++i)
        for(register int j=1;j<=m;++j){
            scanf("%d",&a[i][j]);
        }
    for(register int i=1;i<=n;++i)
        for(register int j=1;j<=m;++j)
            if(a[i][j]) 
            { l[i][j]=l[i][j-1]+1; h[i][j]=h[i-1][j]+1; }//记录一下向上和向左的前缀和
    for(register int i=1;i<=n;++i)
        for(register int j=1;j<=m;++j){
            if(a[i][j])  
            f[i][j]=min(f[i-1][j]+1,min(f[i][j-1]+1,min(f[i-1][j-1]+1,min(h[i][j],l[i][j]))));
            //这个判断稍微复杂了些。
            else  f[i][j]=min(f[i-1][j-1],min(f[i][j-1],f[i-1][j]));//传递值
            ans=max(ans,f[i][j]);
        }
    printf("%d",ans);
    return 0;
}
洛谷 P1681 最大正方形II 是一个动态规划问题,要求给定一个由 '0' 和 '1' 组成的矩阵找出其中最大正方形,并输出边长。 以下是一个 C++ 编写的解答示例: ```cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; int maximalSquare(vector<vector<char>>& matrix) { int rows = matrix.size(); if (rows == 0) return 0; int cols = matrix[0].size(); vector<vector<int>> dp(rows + 1, vector<int>(cols + 1, 0)); int maxSide = 0; for (int i = 1; i <= rows; i++) { for (int j = 1; j <= cols; j++) { if (matrix[i-1][j-1] == '1') { dp[i][j] = min(min(dp[i-1][j], dp[i][j-1]), dp[i-1][j-1]) + 1; maxSide = max(maxSide, dp[i][j]); } } } return maxSide * maxSide; } int main() { int n, m; cin >> n >> m; vector<vector<char>> matrix(n, vector<char>(m)); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { cin >> matrix[i][j]; } } cout << maximalSquare(matrix) << endl; return 0; } ``` 在上述代码中,我们首先定义了一个名为 `maximalSquare` 的函数,该函数接受一个二维字符矩阵 `matrix` 作为参数,返回最大正方形边长。 在 `main` 函数中,我们首先从标准输入读取矩阵的行数和列数,并创建一个大小为 `n x m` 的二维字符矩阵。然后,我们按行读取矩阵的数据,并调用 `maximalSquare` 函数进行求解。最后,输出最大正方形边长。 在动态规划的解法中,我们使用一个二维数组 `dp` 来记录以当前位置为右下角的最大正方形边长。遍历矩阵中的每个元素,如果当前元素为 '1',则根据其左方、上方和左上方的最大正方形边长计算出当前位置的最大正方形边长,并更新 `dp` 数组和最大边长变量。 请注意,以上代码仅为示例,可能需要根据具体题目要求进行适当修改。同时,为了简化示例,未进行输入验证,请确保输入的矩阵符合题目要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值