NOIP数论总结

13 篇文章 0 订阅
10 篇文章 0 订阅

说明:由于博主很菜,所以只总结一些博主知道的和会的,也主要是在NOIP靠前复习一下(突击一下)吧。没有什么顺序,想到啥写啥,还请见谅!

一、组合数、卡特兰数、排列数

1.组合数公式:

C(n,m) = n * (n-1) * (n-2) * (n-3) * … * (n-m+1)/m! = n!/m!(n-m)!
C(n,m) = C(n-1,m-1) + C(n-1,m)
C(n,m) = C(n,n-m)
C(n,m) = C(n,m-1)*(n-m+1)/m (m>0)
图片来自http://blog.csdn.net/coco56181712/article/details/78346844
一道题:P2822 组合数问题
https://blog.csdn.net/sr_19930829/article/details/40888349

2.卡特兰数

卡特兰数前几项:1, 1, 2, 5, 14, 42, 132, 429…
公式1:h(n)=c(2n,n)-c(2n,n-1)(n=0,1,2,…)
公式2:h(n)=h(n-1)(4n-2)/(n+1);
公式3:h(n)=C(2n,n)/(n+1) (n=0,1,2,…)
应用:(几个应用还得多看一下书)
1、有n对括号括号序列的方案数
2、在一个n*n的棋盘上从左下角走到右上角,每次只能向右或向上,且不能越过对角线的路径数
3、n个节点的满二叉树种类(每个节点都有两个子节点或没有)
一道题:P1044 栈

二、gcd、exgcd

1.gcd
int gcd(int a,int b) { return b ? gcd(b,a%b) : a;}  
2.exgcd

基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by。

证明:设 a>b。
1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;
2,ab!=0 时
设 ax1+by1=gcd(a,b);
bx2+(a mod b)y2=gcd(b,a mod b);
根据朴素的欧几里德原理有 gcd(a,b)=gcd(b,a mod b);
则:ax1+by1=bx2+(a mod b)y2;
即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2;
根据恒等定理得:x1=y2; y1=x2-(a/b)*y2;
这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.
上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。

int exgcd(int a,int b,int &x,int &y)  
{  
    if(b==0)  
    {  
        x=1;  
        y=0;  
        return a;  
    }  
    int r=exgcd(b,a%b,x,y);  //(这里的r是a,b的最大公约数)
    int t=x;  
    x=y;  
    y=t-a/b*y;  
    return r;  
}  
P1082 同余方程
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
int a,b,x,y;
void gcd(int a,int b,int &x,int &y){
    if(b==0){ x=1,y=0; return ; }
    gcd(b,a%b,y,x);
    y-=(a/b)*x;
}
int main(){
    scanf("%d%d",&a,&b);
    gcd(a,b,x,y);
    printf("%d",(x+b)%b);
} 

三、线性筛

欧拉线性筛
const int MAXN=3000001;  
int prime[MAXN];//保存素数   
bool vis[MAXN];//初始化   
int Prime(int n)  
{  
    int cnt=0;  
    memset(vis,0,sizeof(vis));  
    for(int i=2;i<n;i++)  
    {  
        if(!vis[i])  
        prime[cnt++]=i;  
        for(int j=0;j<cnt&&i*prime[j]<n;j++)  
        {  
            vis[i*prime[j]]=1;  
            if(i%prime[j]==0)//关键   
            break;  
        }  
    }  
    return cnt;//返回小于n的素数的个数   
}  
普通筛法(应该也叫埃式筛)
int main(){
    n=read(); m=read();tf[1]=true;
    for(register int i=2;i*i<=n;i++){
        if(tf[i]) continue;
        for(register int j=2;j*i<=n;j++) tf[j*i]=true;
    }
    for(int i=1;i<=m;i++){
        int x=read();
        if(!tf[x]) printf("Yes\n");
        else printf("No\n");
    }
}

一种求当区间左右端点都大于1e6时但总长度小于1e6的素数个数的方法
比如求[1e8,1e8+1e6]

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define re register int 
using namespace std;
const int MAX=1e6+5;
char ss[1<<17],*A=ss,*B=ss;
inline char gc(){if(A==B){B=(A=ss)+fread(ss,1,1<<17,stdin);if(A==B)return EOF;}return *A++;}
template<class T>inline void read(T&x){
    char c;re y=1;while(c=gc(),c<48||57<c)if(c=='-')y=-1;x=c^48;
    while(c=gc(),47<c&&c<58)x=(x<<1)+(x<<3)+(c^48);x*=y;
}
template<class T>inline long long Max(T aa,T bb){if(aa>bb)return aa;else return bb;}
int prime[MAX],n,cnt,ans;
bool flag[MAX];//是否是素数
long long a,b;
int main()
{
	freopen("1.in","r",stdin);
	read(a);read(b);
	memset(flag,1,sizeof(flag));
	flag[0]=flag[1]=0;
	for(int i=2;i<=1e6;++i)
	{
		if(flag[i])
		{
			prime[++cnt]=i;
			for(int j=2*i;j<=1e6;j+=i)flag[j]=0;
		}
	}
	memset(flag,1,sizeof(flag));
	for(long long i=1;i<=cnt;i++)
	{
		long long k=prime[i],s=Max(2LL,(a+k-1)/k);
		for(long long j=s*k;j<=b;j+=k)
		flag[j-a]=0;
	}
	for(int i=0;i<=b-a;i++)if(flag[i])ans++;
	if(a==1)ans--;
	cout<<ans<<endl;
	return 0;
}
欧拉线性筛求素数同时求phi()
int main(){
    scanf("%d%d",&n,&m);
    phi[1]=1;
    for(register int i=2;i<=n;++i){
        if(!mark[i]){
            prime[++tot]=i;
            phi[i]=i-1;
        }
        for(register int j=1;j<=tot;++j){
            if(i*prime[j]>n) break;
            mark[i*prime[j]]=1;
            if(i%prime[j]==0){
                phi[i*prime[j]]=phi[i]*prime[j];break;
            }
            else phi[i*prime[j]]=phi[i]*(prime[j]-1);
            //prime[j]-1==phi[prime[j]] 
        }
    }
    mark[1]=1;
    for(register int i=1;i<=m;++i){
        scanf("%d",&x);
        if(!mark[x]) printf("Yes\n");
        else printf("No\n");
    }	
} 

四、欧拉定理

http://blog.csdn.net/getsum/article/details/53204483
http://blog.csdn.net/qq_36368339/article/details/78462782

五、欧拉函数

http://blog.csdn.net/getsum/article/details/53204483

六、唯一分解定理

任何一个大于1的自然数n,都可以唯一分解成有限个质数的乘积
n=pr11∗pr22∗…∗prkk
p1<p2<…<pk均为质数,r1,r2,…rk均为正整数

for(int i=2;i<=sqrt(n);i++) {
	while(n%i==0) prime[i]++,n/=i;
}

七、费马小定理

a^(p-1)=1(mod p)

八、逆元(费马+快速幂||exgcd)

用扩展欧几里得求逆元
typedef  long long ll;  
void extgcd(ll a,ll b,ll& d,ll& x,ll& y){  
    if(!b){ d=a; x=1; y=0;}  //d是用来判断有木有逆元
    else{ extgcd(b,a%b,d,y,x); y-=x*(a/b); }  
}  
ll inverse(ll a,ll n){  
    ll d,x,y;  
    extgcd(a,n,d,x,y);  
    return d==1?(x+n)%n:-1;  
}  
ll exgcd(ll a,ll b,ll &x,ll &y){
    if(b==0){ x=1;y=0; return a; }
    else{ ll s=exgcd(b,a%b,y,x); y-=(a/b)*x; return s; }
}//s返回的是最大公约数
int main(){
	scanf("%d%d",&n,&p);
	for(register int i=1;i<=n;++i){
		exgcd(i,p,x,y);
		x+=p;
		if(x>=p) x-=p;
		printf("%lld\n",x);
	}
	return 0;
}
用费马小定理求逆元

在模为素数p的情况下,有费马小定理
a^(p-1)=1(mod p)
那么a(p-2)=a-1(mod p)
也就是说a的逆元为a^(p-2)

inline long long mi(long long a,long long b){
	long long w=a,s=1;
	while(b){
		if(b&1) s=(s*w)%p;
		w=(w*w)%p;
		b>>=1;
	}
	return s%p;
} 
int main(){
	scanf("%d%d",&n,&p);
	for(register int i=1;i<=n;++i) {
		printf("%lld\n",(mi(i,p-2))%p);
		cout<<mi(i,p-2);
	}
	return 0;
}
线性递推求逆元
n=read();p=read();inv[1]=1;puts("1");
    for(int i=2;i<=n;i++){
        inv[i]=(ll)(p-p/i)*inv[p%i]%p;//记住公式就好
        printf("%d\n",inv[i]);
    }

九、快速幂&&矩阵快速幂

快速幂
inline int mi(int a,int b){
	long long w=a,s=1;
	for(;b;b>>=1){
		if(b&1) s=(s*w)%10007;
		w=(w*w)%10007;
	}
	return s;
}
矩阵快速幂
matrix x(matrix a,matrix b) { //矩阵乘法的模板
	matrix t;
	for(int i=0; i<n; i++)
		for(int j=0; j<n; j++) {
			t.m[i][j]=0;
			for(int k=0; k<n; k++)
				t.m[i][j]=(t.m[i][j]+a.m[i][k]*b.m[k][j])%mod;
		}
	return t;
}
matrix fast_m(matrix a,ll k) {
	matrix s=a,b=a;k--;
	while(k>0) { if(k%2) s=x(b,s); b=x(b,b);  k/=2; }
	return s;
}

参考博客:
noip 数论总结
NOIP 2016[数论复习]
数论总结
数论总结(二)
noip数论复习总结
夏令营讲课内容整理 Day 6 Part 2.
逆元的几种求法(扩展欧几里得,费马小定理或欧拉定理,特例,打表等)
扩展欧几里德算法详解
逆元详解

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值