洛谷 P3385 负环

10 篇文章 0 订阅
6 篇文章 0 订阅

链接地址:https://www.luogu.org/problemnew/show/P3385

题目分析

听说这道题有好几种做法?超神搜索?BFS?SPFA?奇怪的贪心?(管理员更新了数据,别想了QWQ.可能是我太菜了,想不出吧.)
说说我的解法:我们就做普通的SPFA,不要加什么酸辣粉SLF优化,会超时!!!判断每个点进队列的的次数,如果次数超过了n次,说明存在负环.(证明,自己想一想也许就可以了吧,如果一个点多次被用来更新,说明有可能存在负环,而当次数超过n次,可能行就特别大)

程序代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<iostream>
using namespace std;
struct arr{
    int nd,nx,co;
}bot[10000];
bool flag;
int n,m,cnt,t,cntt[3005],dis[3005],head[3005],vis[3005];
inline int read(){
    int x=0,w=1;char ch;
    while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
    if(ch=='-') w=-1,ch=getchar();
    while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+(ch-48),ch=getchar();
    return x*w;
}
inline void add(int a,int b,int c){ bot[++cnt].nd=b; bot[cnt].co=c; bot[cnt].nx=head[a];head[a]=cnt; }
inline void init(){ //多组数据,记得赋初始值
    memset(bot,0,sizeof(bot)); memset(head,0,sizeof(head)); 
    memset(vis,0,sizeof(vis)); memset(dis,0x3f,sizeof(dis));
    //memset(cntt,0,sizeof(cntt));
    flag=true;cnt=0;
}
inline int spfa(int s){
    queue<int>q;
    dis[s]=0;vis[s]=true;cntt[s]=1;q.push(s);
    while(!q.empty()) {
        int u=q.front();q.pop();
        vis[u]=0;
        for(register int i=head[u];i;i=bot[i].nx) {
            int v=bot[i].nd;
            if(dis[v]>dis[u]+bot[i].co) {
                dis[v]=dis[u]+bot[i].co;
                if(!vis[v]) {
                    vis[v]=true;
                    cntt[v]=cntt[u]+1;
                    //判断进队次数,至于为什么不是cntt[v]++
//这位大佬有讲https://www.luogu.org/blog/XiaoXkkk/p3385-mu-ban-fu-huan
                    if(cntt[v]>=n) 
                        return 1;
                    q.push(v);
                }
            }
        }
    }
    return 0;
}
int main(){
    t=read();
    for(register int k=1;k<=t;++k) {
        n=read(),m=read();
        init();
        for(register int i=1;i<=m;++i) {
            int a=read(),b=read(),w=read();
            add(a,b,w);
            if(w>=0) add(b,a,w);
        }
        if(spfa(1)) cout<<"YE5"<<endl;
        else cout<<"N0"<<endl;
    }
    return 0;
}
判断负环的经典算法是 Bellman-Ford 算法。该算法的主要思想是进行 n 次松弛操作,其中 n 为图中节点的数量。如果在第 n 次松弛操作后仍然存在可以被松弛的边,则说明图中存在负环。 在具体实现时,可以先将所有节点的距离初始化为正无穷大,起始节点的距离为 0。然后进行 n 次松弛操作,每次松弛操作都枚举所有边,如果该边的起点的距离加上边的权值小于终点的距离,则更新终点的距离。如果在第 n 次松弛操作后仍然存在可以被松弛的边,则说明图中存在负环。 具体代码实现可以参考以下代码: ```cpp #include <iostream> #include <vector> #include <queue> #include <cstring> using namespace std; const int INF = 0x3f3f3f3f; struct Edge { int to, weight; Edge(int _to, int _weight) : to(_to), weight(_weight) {} }; vector<Edge> edges[1000]; int dist[1000]; bool inQueue[1000]; bool bellmanFord(int start, int n) { memset(dist, INF, sizeof(dist)); dist[start] = 0; queue<int> q; for (int i = 1; i <= n; i++) { q.push(i); inQueue[i] = true; } while (!q.empty()) { int u = q.front(); q.pop(); inQueue[u] = false; for (int i = 0; i < edges[u].size(); i++) { int v = edges[u][i].to; int w = edges[u][i].weight; if (dist[u] != INF && dist[u] + w < dist[v]) { dist[v] = dist[u] + w; if (!inQueue[v]) { q.push(v); inQueue[v] = true; } if (dist[v] < 0) { return true; } } } } return false; } int main() { int n, m; cin >> n >> m; for (int i = 0; i < m; i++) { int u, v, w; cin >> u >> v >> w; edges[u].push_back(Edge(v, w)); } if (bellmanFord(1, n)) { cout << "YES" << endl; } else { cout << "NO" << endl; } return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值