python 爬取拉钩网数据

python 爬取拉钩网数据

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import random
import time

import requests
from openpyxl import Workbook
import pymysql.cursors


def get_conn():
    conn = pymysql.connect(host='localhost',
                           user='root',
                           password='x',
                           db='lagou',
                           charset='utf8',
                           cursorclass=pymysql.cursors.DictCursor)
    return conn


def insert(conn, info):
    try:
        with conn.cursor() as cursor:
            sql = "INSERT INTO `python` (`shortname`, `fullname`, `industryfield`, " \
                  "`companySize`, `salary`, `city`, `education`) VALUES (%s, %s, %s, %s, %s, %s, %s)"
            cursor.execute(sql, info)
        conn.commit()
        print("数据入库成功......")
    except Exception as e:
        print(e)
        conn.rollback()


def get_json(url, page, lang_name):
    '''返回当前页面的信息列表'''
    headers = {
        'Host': 'www.lagou.com',
        'Connection': 'keep-alive',
        'Content-Length': '23',
        'Origin': 'https://www.lagou.com',
        'X-Anit-Forge-Code': '0',
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:61.0) Gecko/20100101 Firefox/61.0',
        'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8',
        'Accept': 'application/json, text/javascript, */*; q=0.01',
        'X-Requested-With': 'XMLHttpRequest',
        'X-Anit-Forge-Token': 'None',
        'Referer': 'https://www.lagou.com/jobs/list_python?city=%E5%85%A8%E5%9B%BD&cl=false&fromSearch=true&labelWords=&suginput=',
        'Accept-Encoding': 'gzip, deflate, br',
        'Accept-Language': 'en-US,en;q=0.9,zh-CN;q=0.8,zh;q=0.7'
    }
    data = {'first': 'false', 'pn': page, 'kd': lang_name}
    json = requests.post(url, data, headers=headers, timeout=20).json()
    list_con = json['content']['positionResult']['result']
    info_list = []
    for i in list_con:
        info = [i.get('companyShortName', '无'), i.get('companyFullName', '无'), i.get('industryField', '无'),
                i.get('companySize', '无'), i.get('salary', '无'), i.get('city', '无'), i.get('education', '无')]
        info_list.append(info)
    return info_list  # 返回列表


def main():
    lang_name = 'python'
    wb = Workbook()  # 打开 excel 工作簿
    conn = get_conn()  # 建立数据库连接  不存数据库 注释此行
    for i in ['上海', '广州', '深圳', '杭州', '北京']:  # 五个城市
        page = 1
        ws1 = wb.active
        ws1.title = lang_name
        url = 'https://www.lagou.com/jobs/positionAjax.json?city={}&needAddtionalResult=false'.format(i)
        while page < 31:  # 每个城市30页信息
            info = get_json(url, page, lang_name)
            page += 1
            for row in info:
                insert(conn, tuple(row))  # 插入数据库,若不想存入 注释此行
                ws1.append(row)
            time.sleep(random.randint(40, 60))
    conn.close()  # 关闭数据库连接,不存数据库 注释此行
    wb.save('{}职位信息.xlsx'.format(lang_name))


if __name__ == '__main__':
    main()

  完整代码下载:https://github.com/tanjunchen/SpiderProject/blob/master/lagou/LaGouSpider.py

好的,下面是 scrapy 爬取拉钩的步骤: 1. 创建 scrapy 项目 在命令行中输入以下命令来创建 Scrapy 项目: ``` scrapy startproject lagou ``` 其中,`lagou` 是项目名称。 2. 创建爬虫 在项目的根目录下,使用以下命令创建一个爬虫: ``` scrapy genspider lagou_spider www.lagou.com ``` 其中,`lagou_spider` 是爬虫名称,`www.lagou.com` 是要爬取网站的域名。 3. 编写爬虫代码 打开 `lagou_spider.py` 文件,将其修改为以下内容: ```python import scrapy class LagouSpider(scrapy.Spider): name = "lagou" allowed_domains = ["www.lagou.com"] start_urls = ["https://www.lagou.com/"] def parse(self, response): pass ``` 我们定义了一个 `LagouSpider` 类,并指定了名称、域名和起始 URL。在 `parse` 方法中,我们暂时没有写任何代码,因为我们需要先分析网站的页面结构和数据格式,才能编写爬虫代码。 4. 分析页面结构和数据格式 使用浏览器打开拉钩网站,进入搜索职位界面,选择一个职位类型,例如 Python 开发,然后按下搜索按钮。此时,浏览器会跳转到一个新的页面,该页面的 URL 会包含搜索的关键词。例如,搜索 Python 开发,URL 为 `https://www.lagou.com/zhaopin/Python/`。 我们打开浏览器的开发者工具,切换到 Network 选项卡,然后点击搜索按钮。此时,我们会看到浏览器发送了多个请求,其中一个是 `https://www.lagou.com/jobs/positionAjax.json`,该请求返回了搜索结果的 JSON 数据。我们可以点击该请求,然后在 Preview 选项卡中查看数据格式。 我们可以看到,返回的 JSON 数据包含了多个职位的信息,每个职位包含了如下字段: - `companyFullName` 公司全名 - `companyShortName` 公司简称 - `companySize` 公司规模 - `district` 工作地点 - `education` 学历要求 - `financeStage` 融资阶段 - `firstType` 职位类别 - `industryField` 行业领域 - `positionAdvantage` 职位诱惑 - `positionId` 职位ID - `positionName` 职位名称 - `salary` 薪资范围 - `secondType` 职位子类别 - `workYear` 工作经验 现在,我们已经了解了数据的格式,可以开始编写爬虫代码了。 5. 完善爬虫代码 我们需要在 `parse` 方法中,向 `https://www.lagou.com/jobs/positionAjax.json` 发送请求,获取 JSON 数据,并解析数据,提取职位信息。 以下是完整的爬虫代码: ```python import scrapy import json class LagouSpider(scrapy.Spider): name = "lagou" allowed_domains = ["www.lagou.com"] start_urls = ["https://www.lagou.com/"] def parse(self, response): job_types = ["Python", "Java", "PHP", "C++", "C#", "Ruby", "Scala", "Go", "Swift"] for job_type in job_types: url = "https://www.lagou.com/jobs/positionAjax.json?px=default&city=%E5%8C%97%E4%BA%AC&needAddtionalResult=false&isSchoolJob=0" headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.2236.0 Safari/537.36 Edg/114.0.2236.0", "Referer": f"https://www.lagou.com/zhaopin/{job_type}/" } data = { "first": "false", "pn": "1", "kd": job_type } yield scrapy.Request(url=url, method="POST", headers=headers, body=json.dumps(data), callback=self.parse_job_list, meta={"job_type": job_type}) def parse_job_list(self, response): job_type = response.meta["job_type"] result = json.loads(response.text) for job in result["content"]["positionResult"]["result"]: yield { "job_type": job_type, "position_name": job["positionName"], "salary": job["salary"], "company_full_name": job["companyFullName"], "work_year": job["workYear"], "education": job["education"], "job_nature": job["jobNature"], "position_advantage": job["positionAdvantage"] } ``` 在 `parse` 方法中,我们通过循环遍历多个职位类型,向 `https://www.lagou.com/jobs/positionAjax.json` 发送 POST 请求,获取 JSON 数据。我们在请求头中设置了 User-Agent 和 Referer,以便绕过反爬虫机制。我们在请求体中设置了查询参数,其中 `kd` 表示搜索的职位类型。我们使用 `json.dumps` 方法将请求体转换为 JSON 格式,并将结果作为请求体发送。 在 `parse_job_list` 方法中,我们解析了返回的 JSON 数据,并提取了职位信息。我们使用 `yield` 关键字将每个职位信息生成为一个字典,然后交给 Scrapy 引擎处理。 6. 运行爬虫 在命令行中进入项目的根目录,然后输入以下命令,运行爬虫: ``` scrapy crawl lagou -o lagou.json ``` 其中,`-o lagou.json` 表示将爬取数据保存到 `lagou.json` 文件中。您可以根据需要修改文件名和路径。 7. 结果分析 打开生成的 `lagou.json` 文件,您可以看到爬取到的数据。每个职位信息都包含了职位类型、职位名称、薪资范围、公司全名、工作经验、学历要求、职位性质和职位诱惑等字段。您可以根据需要对数据进行分析和处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

远方的飞猪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值