pytorch
西柚西柚xiu
这个作者很懒,什么都没留下…
展开
-
Pytorch踩坑记录:关于用net.eval()和with no grad装饰器计算结果不一样的问题
Pytorch踩坑记录相同点net.eval()和with toch.no_grad()的相同点:都停止反向传播不同点:1、net.eval()用net.eval(),此时BN层会用训练时的均值和方差。不重新计算输入数据的均值和方差,dropout会让所有激活单元都通过。2、with toch.no_grad()用with no grad(),BN层仍会计算输入数据的方差和均值,DropOut会按照设定的比例停止某些激活单元的传输。对于测试集来说,要使用net.eval,因为使用with n原创 2022-04-28 14:54:29 · 2798 阅读 · 0 评论 -
torch.max的维度变换
torch.max的维度变换torch.max()例子创建一个随机tensortorch.mean()同理torch.max()返回输入张量所有元素的最大值。例子torch.max(input, dim, max=None, max_indices=None) -> (Tensor, LongTensor)dim=0,列的最大值,dim=1,行的最大值,dim=-1,倒数第一个size维度上的最大值创建一个随机tensor a=torch.tensor([[1,5,62,54],原创 2021-12-16 11:17:23 · 1545 阅读 · 0 评论