一、题目解析:64. 最小路径和(中等)
给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-path-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
二、解题思路:,
1、动态方程dp[i][j] = min(dp[i-1][j],dp[i][j-1]) + grid[i][j],可使用grid原数组作为动态数据(不需要重新申请空间)
2、边界条件,dp[0][0] = grid[0][0],dp[i][0] = dp[i-1] + grid[i][0],dp[0][j]=dp[0][j-1]+grid[[0][j]
三、代码
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int n = grid.size();
if(n == 0)
return 0;
int m = grid[0].size();
if(m == 0)
return 0;
vector<vector<int>> & dp = grid;
//dp(n,vector<int>(m,0));
dp[0][0] = grid[0][0];
for(int i = 1;i < n;i++)
{
dp[i][0] = dp[i-1][0] + grid[i][0];
}
for(int i = 1;i < m;i++)
{
dp[0][i] = dp[0][i-1] + grid[0][i];
}
for(int i = 1;i<n;i++)
{
for(int j = 1;j<m;j++)
{
dp[i][j] = min(dp[i-1][j],dp[i][j-1]) + grid[i][j];
}
}
return dp[n-1][m-1];
}
};