leetcode题:64. 最小路径和(中等)

一、题目解析:64. 最小路径和(中等)

给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例:

输入:
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-path-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

二、解题思路:,

1、动态方程dp[i][j] = min(dp[i-1][j],dp[i][j-1]) + grid[i][j],可使用grid原数组作为动态数据(不需要重新申请空间)

2、边界条件,dp[0][0] = grid[0][0],dp[i][0] = dp[i-1] + grid[i][0],dp[0][j]=dp[0][j-1]+grid[[0][j]

三、代码

class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        int n = grid.size();
        if(n == 0)
            return 0;
        int m = grid[0].size();
        if(m == 0)
            return 0;
        vector<vector<int>> & dp = grid;
        //dp(n,vector<int>(m,0));
        dp[0][0] = grid[0][0];
        for(int i = 1;i < n;i++)
        {
            dp[i][0] = dp[i-1][0] + grid[i][0];
        }
        for(int i = 1;i < m;i++)
        {
            dp[0][i] = dp[0][i-1] + grid[0][i];
        }
        for(int i = 1;i<n;i++)
        {
            for(int j = 1;j<m;j++)
            {
                dp[i][j] = min(dp[i-1][j],dp[i][j-1]) + grid[i][j];
            }
        }
        return dp[n-1][m-1];
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值