伯努利分布、二项分布、几何分布、超几何分布、泊松分布结束

导语

   对于任何一个学习概率论的童鞋来说,各种分布都是很头痛的一件事情,本篇主要讨论的是离散型随机变量.

伯努利分布

   伯努利分布就是我们常见的0-1分布,即它的随机变量只取0或者1,各自的频率分别取1−p和p,当x=0或者x=1时,我们数学定义为: 

p(x)=px∗(1−p)1−x

   其它情况下p(x)=0,伯努利分布是一个非常好理解的分布,也是很多其它分布的基础。

离散型随机变量期望:E(x)=∑x∗p(x)
方差:D(x)=E(x2)−E2(x)
对于伯努利分布来说,E(x)=1∗p+0∗(1−p)=p,D(x)=12∗p−p2=p(1−p)
二项分布

   二项分布是这样一种分布,假设进行n次独立实验,每次实验“成功”的概率为p,失败的概率为1−p,所有成功的次数X就是一个参数为n和p的二项随机变量.数学公式定义为: 

p(k)=(nk)∗pk∗(1−p)n−k

   二项分布公式基于伯努利分布得到,因为二项分布中每项实验都是独立的,因此每一次实验都是一次伯努利实验,在n次实验中,成功k次,排列方式有(nk)种,根据乘法原理,即可得到二项分布的公式。

话外:对于均值和方差的计算,Xi是标准的伯努利分布,总发生次数X=∑n1Xi,所以E(X)=E(∑n1Xi)=∑n1E(Xi)=n∗p,同理方差D(x)=∑n1D(Xi)=n∗p∗(1−p)
几何分布和负二项分布

   这是一个比较简单的分布,其中负二项分布是几何分布的一般形式,几何分布与二项分布类似,也是由n次伯努利分布构成,随机变量X表示第一次成功所进行试验的次数,则 

p(k)=P(X=k)=p∗(1−p)k−1,k=1,2,3,…

   负二项分布是几何分布的一般形式,表示直到成功r次停止,显而易见,当r=1时,它就是几何分布,则 

P(X=k)=(k−1r−1)pr∗(1−p)k−r
关于几何分布的期望与方差,E(X)=1/p,D(x)=(1−p)/p2,关于期望的证明,E(X)=∑∞n=1n∗p∗qn−1=p∗∑∞n=1(qn)′=p∗(∑∞n=1qn)′=1/p,方差证明与期望证明类似,不再赘述…
超几何分布

   非常常见的一种分布,常用来表示在N个物品中有指定商品M个,不放回抽取n个,抽中指定商品的个数,即X~H(N,n,M),则抽中k件的概率为: 

p(k)=P(X=k)=(Mk)∗(N−Mn−k)(Nn)

   实际应用中超几何分布例子很多,比如彩票开奖你所符合的数字个数等。

泊松分布

   泊松分布是离散型随机变量分布中相对较难的一种,泊松频率函数定义为: 

P(X=k)=λk∗e−λk!,k=0,1,2,3,…

   泊松分布是二项分布的极限形式,可有二项分布概率公式推导得出,其中λ=n∗p,当n>>p时, 

p(k)=(nk)∗pk∗(1−p)n−k=n!∗pk∗(1−p)n−kk!∗(n−k)!=n!∗(λn)k∗(1−λn)n−kk!∗(n−k)!=λkk!∗n!(n−k)!∗k!∗(1−λn)n∗(1−λn)−k

当n->∞时,λn->0,n!(n−k)!∗k!->1,(1−λn)n->e−λ,(1−λn)−k->1,所以
p(k)−>λk∗e−λk!
泊松分布的期望和方差均为λ,证明过程严格按照定义即可,注意在证明过程中使用到了eλ的泰勒展开
泊松分布主要用来研究单位时间或单位空间内某时间的发生次数,同时事件的发生必须是相互独立的,比如单位时间内通过某一交通灯的车辆数等。λ大概等于20时,泊松分布基本可以近似为正态分布进行处理。
泊松分布用来衡量事件的稳定性是一个不错的方法,再配合一些统计学上的检验方法,能够做很多东西,在之后的连续型随机变量中,有一种分布叫指数分布,它与泊松分布密不可分,可由泊松分布推导出…..敬请期待.

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值