python中dataframe常见操作:取行、列、切片、统计特征值

#  -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
from pandas import  *
from numpy import *


data = DataFrame(np.arange(16).reshape(4,4),index = list("ABCD"),columns=list('wxyz'))
print data
print data[0:2]       #取前两行数据
print'+++++++++++++'

print len(data )              #求出一共多少行
print data.columns.size      #求出一共多少列
print'+++++++++++++'

print data.columns        #列索引名称
print data.index       #行索引名称
print'+++++++++++++'

print data.ix[1]                #取第2行数据
print data.iloc[1]             #取第2行数据
print'+++++++++++++'

print data['x']      #取列索引为x的一列数据
print data.loc['A']      #取第行索引为”A“的一行数据,
print'+++++++++++++'

print data.loc[:,['x','z'] ]          #表示选取所有的行以及columns为a,b的列;
print data.loc[['A','B'],['x','z']]     #表示选取'A'和'B'这两行以及columns为x,z的列的并集;
print'+++++++++++++'

print data.iloc[1:3,1:3]              #数据切片操作,切连续的数据块
print data.iloc[[0,2],[1,2]]              #即可以自由选取行位置,和列位置对应的数据,切零散的数据块
print'+++++++++++++'

print data[data>2]       #表示选取数据集中大于0的数据
print data[data.x>5]       #表示选取数据集中x这一列大于5的所有的行

print'+++++++++++++'
a1=data.copy()
print a1[a1['y'].isin(['6','10'])]    #表显示满足条件:列y中的值包含'6','8'的所有行。

print data.mean()           #默认对每一列的数据求平均值;若加上参数a.mean(1)则对每一行求平均值;
print data['x'].value_counts()    #统计某一列x中各个值出现的次数:

print data.describe() #对每一列数据进行统计,包括计数,均值,std,各个分位数等。

data.to_excel(r'E:\pypractice\Yun\doc\2.xls',sheet_name='Sheet1')  #数据输出至Excel

  • 81
    点赞
  • 437
    收藏
  • 打赏
    打赏
  • 7
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
评论 7

打赏作者

贪狼切

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值