Strassen矩阵乘法(分治策略,java语言实现)

import  java.io. * ;
import  java.util. * ;
class  matrix
{
    
public int[][] m = new int[32][32];
}

public   class  Strassen
{
    
public int judgment(int n)
    
{
        
int flag = 0,temp=n;
        
while(temp%2==0)
        
{
            
if(temp%2==0
                temp
/=2;
            
else flag=1;
        }

        
if(temp==1
            flag
=0;
        
return flag;
    }

    
public void Divide(matrix d,matrix d11,matrix d12,matrix d21,matrix d22,int n)/*分解矩阵方法*/
    
{
        
int i,j;
        
for(i=1;i<=n;i++)
        
for(j=1;j<=n;j++)
        
{
            d11.m[i][j]
=d.m[i][j];
            d12.m[i][j]
=d.m[i][j+n];
            d21.m[i][j]
=d.m[i+n][j];
            d22.m[i][j]
=d.m[i+n][j+n];
        }

    }

    
public matrix Merge(matrix a11,matrix a12,matrix a21,matrix a22,int n)/*合并矩阵方法*/
    
{
        
int i,j;
        matrix a 
= new matrix();
        
for(i=1;i<=n;i++)
        
for(j=1;j<=n;j++)
        
{
            a.m[i][j]
=a11.m[i][j];
            a.m[i][j
+n]=a12.m[i][j];
            a.m[i
+n][j]=a21.m[i][j];
            a.m[i
+n][j+n]=a22.m[i][j];
        }

        
return a;
    }

    
public matrix AdhocMatrixMultiply(matrix x,matrix y) /*阶数为2的矩阵乘法方法*/
    
{
        
int m1,m2,m3,m4,m5,m6,m7;
        matrix z 
= new matrix();

        m1
=(y.m[1][2- y.m[2][2]) * x.m[1][1];
        m2
=y.m[2][2* (x.m[1][1+ x.m[1][2]);
        m3
=(x.m[2][1+ x.m[2][2]) * y.m[1][1];
        m4
=x.m[2][2* (y.m[2][1- y.m[1][1]);
        m5
=(x.m[1][1+ x.m[2][2]) * (y.m[1][1]+y.m[2][2]);
        m6
=(x.m[1][2- x.m[2][2]) * (y.m[2][1]+y.m[2][2]);
        m7
=(x.m[1][1- x.m[2][1]) * (y.m[1][1]+y.m[1][2]);
        z.m[
1][1= m5 + m4 - m2 + m6;
        z.m[
1][2= m1 + m2;
        z.m[
2][1= m3 + m4;
        z.m[
2][2= m5 + m1 - m3 - m7;
        
return z;
    }

    
public matrix MatrixPlus(matrix f,matrix g,int n) /*矩阵加法方法*/
    
{
        
int i,j;
        matrix h 
= new matrix();
        
for(i=1;i<=n;i++)
        
for(j=1;j<=n;j++)
        h.m[i][j]
=f.m[i][j]+g.m[i][j];
        
return h;
    }

    
public matrix MatrixMinus(matrix f,matrix g,int n) /*矩阵减法方法*/
    
{
        
int i,j;
        matrix h 
= new matrix();
        
for(i=1;i<=n;i++)
        
for(j=1;j<=n;j++)
        h.m[i][j]
=f.m[i][j]-g.m[i][j];
        
return h;
    }


    
public matrix MatrixMultiply(matrix a,matrix b,int n) /*矩阵乘法方法*/
    
{
        
int k;
        matrix a11,a12,a21,a22;
        a11 
= new matrix();
        a12 
= new matrix();
        a21 
= new matrix();
        a22 
= new matrix();
        matrix b11,b12,b21,b22;
        b11 
= new matrix();
        b12 
= new matrix();
        b21 
= new matrix();
        b22 
= new matrix();
        matrix c11,c12,c21,c22,c;
        c11 
= new matrix();
        c12 
= new matrix();
        c21 
= new matrix();
        c22 
= new matrix();
        c 
= new matrix();
        matrix m1,m2,m3,m4,m5,m6,m7;
        k
=n;
        
if(k==2)
        
{
            c
=AdhocMatrixMultiply(a,b);
            
return c;
        }

        
else
        

            k
=n/2;
            Divide(a,a11,a12,a21,a22,k); 
//拆分A、B、C矩阵
            Divide(b,b11,b12,b21,b22,k);
            Divide(c,c11,c12,c21,c22,k);
            
            m1
=MatrixMultiply(MatrixMinus(b12,b22,n/2),a11,k);
            m2
=MatrixMultiply(b22,MatrixPlus(a11,a12,k),k);
            m3
=MatrixMultiply(MatrixPlus(a21,a22,k),b11,k);
            m4
=MatrixMultiply(a22,MatrixMinus(b21,b11,k),k);
            m5
=MatrixMultiply(MatrixPlus(a11,a22,k),MatrixPlus(b11,b22,k),k);
            m6
=MatrixMultiply(MatrixMinus(a12,a22,k),MatrixPlus(b21,b22,k),k);
            m7
=MatrixMultiply(MatrixMinus(a11,a21,k),MatrixPlus(b11,b12,k),k);
            c11
=MatrixPlus(MatrixMinus(MatrixPlus(m5,m4,k),m2,k),m6,k);
            c12
=MatrixPlus(m1,m2,k);
            c21
=MatrixPlus(m3,m4,k);
            c22
=MatrixMinus(MatrixMinus(MatrixPlus(m5,m1,k),m3,k),m7,k);
            
            c
=Merge(c11,c12,c21,c22,k); //合并C矩阵
            return c;
        }
 
    }

    
public static void main(String[] args)throws IOException
    
{
        Strassen instance 
= new Strassen();
        
int i,j,num;
        matrix A,B,C;
        A 
= new matrix();
        B 
= new matrix();
        C 
= new matrix();
        Scanner in 
= new Scanner(System.in);
        System.out.print(
"输入矩阵的阶数: ");
        num 
= in.nextInt();
        
if(instance.judgment(num)==0)
        
{
            System.out.println(
"输入矩阵A:");
            
for(i=1;i<=num;i++)
                
for(j=1;j<=num;j++)
                    A.m[i][j] 
= in.nextInt();
            System.out.println(
"输入矩阵A:");
            
for(i=1;i<=num;i++)
                
for(j=1;j<=num;j++)
                    B.m[i][j] 
= in.nextInt();
            
if(num==1
                C.m[
1][1]=A.m[1][1]*B.m[1][1]; //矩阵阶数为1时的特殊处理 
            else 
                C
=instance.MatrixMultiply(A,B,num);
            System.out.println(
"矩阵C为:");
            
for(i=1;i<=num;i++)
            
{
                
for(j=1;j<=num;j++)
                    System.out.print(C.m[i][j] 
+ "     ");
                System.out.println();
            }

        }

        
else
            System.out.println(
"输入的阶数不是2的N次方");
    }

}
 
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值