storm-01(3)

3.分区聚合操作

		分区聚合操作由 聚合器 - CombinerAggregator, ReducerAggregator, Aggregator 来实现。
		分区聚合操作(partitionAggregate)对每个Partition中的tuple进行聚合.
		与前面的Function在原tuple后面追加数据不同,分区聚合操作的输出会直接替换掉输入的tuple,仅输出分区聚合操作中发射的tuple。
		=========================
		~方法:
			partitionAggregate(Fields,Aggreator/CombinerAggregator/ReducerAggregator,Fields)
			第一个参数:要进入聚合器的字段们
			第二个参数:聚合器对象
			第三个参数:聚合后输出的字段们
		~三种聚合器
			CombinerAggregator接口:
				public interface CombinerAggregator <T> extends Serializable {  
					T init(TridentTuple tuple);  
					T combine(T val1, T val2);  
					T zero();  
				}  
				CombinerAggregator接口只返回一个tuple,并且这个tuple也只包含一个field。
				执行过程:
					针对每个分区都执行如下操作
					每个分区处理开始前首先调用zero()方法产生一个初始值val1。
					之后对应分区中的每个tuple,都会进行如下操作:
						先调用init方法对当前tuple进行处理,产生当前tuple对应的val2
						再调用combine函数将之前的val1和当前tuple对应的val2进行合并处理,返回合并后的值成为新的val1
					循环如上步骤处理分区中内的所有tuple,并将最终产生的val1作为整个分区合并的结果返回。

			ReducerAggregator接口:
				public interface ReducerAggregator <T> extends Serializable {  
			        T init();  
			        T reduce(T curr, TridentTuple tuple);  
			    } 
				ReducerAggregator接口只返回一个tuple,并且这个tuple也只包含一个field。
				执行过程:
					针对每一个分区都执行如下操作
					每个分区处理开始时先调用init方法产生初始值curr。
					对分区中的每个tuple,依次调用reduce方法,方法中传入当前curr和当前tuple进行处理,产生新的curr返回
					整个分区处理完,将最终产生的curr作为整个分区合并的结果返回。

			Aggregator接口 - 通常我们不会直接实现此接口,更多的时候继承BaseAggregator抽象类:
				public interface Aggregator<T> extends BaseAggregator {  
					T init(Object batchId, TridentCollector collector);  
					void aggregate(T val, TridentTuple tuple, TridentCollector collector);  
					void complete(T val, TridentCollector collector);  
				}  
				Aggregator是最通用的聚合器。
				Aggregator接口可以发射含任意数量属性的任意数据量的tuples,并且可以在执行过程中的任何时候发射:
				执行过程:
					针对每一个分区都执行如下操作
					init:在处理数据之前被调用,它的返回值会作为一个状态值传递给aggregate和complete方法
					aggregate:用来处理每一个输入的tuple,它可以更新状态值也可以发射tuple
					complete:当所有tuple都被处理完成后被调用     
		=========================

案例四:统计中日志条数CombinerAggregator

package com.liming.count_combiner_aggerate;

import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.tuple.Fields;
import backtype.storm.utils.Utils;
import storm.trident.Stream;
import storm.trident.TridentTopology;

public class TridentDemo {
	public static void main(String[] args) {
		//--创建topology
		TridentTopology topology = new TridentTopology();
		
		Stream s = topology.newStream("xx", new SentenceSpout())
		.each(new Fields("name"), new GenderFunc(),new Fields("gender"))
		.partitionAggregate(new Fields("name"), new CountCombinerAggerate(), new Fields("count"));
		s.each(s.getOutputFields(), new PrintFilter());
		
		//--提交到集群中运行
		Config conf = new Config();
		LocalCluster cluster = new LocalCluster();
		cluster.submitTopology("MyTopology", conf, topology.build());
		
		//--运行10秒钟后杀死Topology关闭集群
		Utils.sleep(1000 * 10);
		cluster.killTopology("MyTopology");
		cluster.shutdown();
	}
}
package com.liming.count_combiner_aggerate;

import java.util.Map;

import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseRichSpout;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;
import backtype.storm.utils.Utils;

public class SentenceSpout extends BaseRichSpout{

	private SpoutOutputCollector collector = null;
	
	private Values [] values = {
			new Values("xiaoming","i am so shuai"),
			new Values("xiaoming","do you like me"),
			new Values("xiaohua","i do not like you"),
			new Values("xiaohua","you look like fengjie"),
			new Values("xiaoming","are you sure you do not like me"),
			new Values("xiaohua","yes i am"),
			new Values("xiaoming","ok i am sure")
	};
	
	private int index = 0;
	@Override
	public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
		this.collector = collector;
	}

	@Override
	public void nextTuple() {
		if(index<values.length){
			collector.emit(values[index]);
			index++;
		}
		Utils.sleep(100);
	}

	@Override
	public void declareOutputFields(OutputFieldsDeclarer declarer) {
		Fields fields = new Fields("name","sentence");
		declarer.declare(fields);
	}

}
package com.liming.count_combiner_aggerate;

import backtype.storm.tuple.Values;
import storm.trident.operation.BaseFunction;
import storm.trident.operation.TridentCollector;
import storm.trident.tuple.TridentTuple;

public class GenderFunc extends BaseFunction{

	@Override
	public void execute(TridentTuple tuple, TridentCollector collector) {
		String name = tuple.getStringByField("name");
		if("xiaoming".equals(name)){
			collector.emit(new Values("male"));
		}else if("xiaohua".equals(name)){
			collector.emit(new Values("female"));
		}else{
		}
	}
	
}
package com.liming.count_combiner_aggerate;

import storm.trident.operation.CombinerAggregator;
import storm.trident.tuple.TridentTuple;

public class CountCombinerAggerate implements CombinerAggregator<Integer> {

	@Override
	public Integer init(TridentTuple tuple) {
		return 1;
	}

	@Override
	public Integer combine(Integer val1, Integer val2) {
		return val1+val2;
	}

	@Override
	public Integer zero() {
		return 0;
	}

}
package com.liming.count_combiner_aggerate;

import java.util.Iterator;
import java.util.Map;

import backtype.storm.tuple.Fields;
import storm.trident.operation.BaseFilter;
import storm.trident.operation.TridentOperationContext;
import storm.trident.tuple.TridentTuple;

public class PrintFilter extends BaseFilter{

	private TridentOperationContext context = null;
	@Override
	public void prepare(Map conf, TridentOperationContext context) {
		super.prepare(conf, context);
		this.context = context;
	}
	
	@Override
	public boolean isKeep(TridentTuple tuple) {
		StringBuffer buf = new StringBuffer();
		
		Fields fields = tuple.getFields();
		Iterator<String> it = fields.iterator();

		while(it.hasNext()){
			String key = it.next();
			Object value = tuple.getValueByField(key);
			buf.append("---"+key+":"+value+"---");
		}
		System.out.println(buf.toString());
		
		return true;
	}
	
}

测试结果:

案例五:测试ReducerAggregator:

package com.liming.count_ReducerAggregator;

import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.tuple.Fields;
import backtype.storm.utils.Utils;
import storm.trident.Stream;
import storm.trident.TridentTopology;

public class TridentDemo {
	public static void main(String[] args) {
		//--创建topology
		TridentTopology topology = new TridentTopology();
		
		Stream s = topology.newStream("xx", new SentenceSpout())
		.partitionAggregate(new Fields("name"), new CountReducerAggerator(), new Fields("count"));
		s.each(s.getOutputFields(), new PrintFilter());
		
		//--提交到集群中运行
		Config conf = new Config();
		LocalCluster cluster = new LocalCluster();
		cluster.submitTopology("MyTopology", conf, topology.build());
		
		//--运行10秒钟后杀死Topology关闭集群
		Utils.sleep(1000 * 10);
		cluster.killTopology("MyTopology");
		cluster.shutdown();
	}
}
package com.liming.count_ReducerAggregator;

import java.util.Map;

import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseRichSpout;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;
import backtype.storm.utils.Utils;

public class SentenceSpout extends BaseRichSpout{

	private SpoutOutputCollector collector = null;
	
	private Values [] values = {
			new Values("xiaoming","i am so shuai"),
			new Values("xiaoming","do you like me"),
			new Values("xiaohua","i do not like you"),
			new Values("xiaohua","you look like fengjie"),
			new Values("xiaoming","are you sure you do not like me"),
			new Values("xiaohua","yes i am"),
			new Values("xiaoming","ok i am sure")
	};
	
	private int index = 0;
	@Override
	public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
		this.collector = collector;
	}

	@Override
	public void nextTuple() {
		if(index<values.length){
			collector.emit(values[index]);
			index++;
		}
		Utils.sleep(100);
	}

	@Override
	public void declareOutputFields(OutputFieldsDeclarer declarer) {
		Fields fields = new Fields("name","sentence");
		declarer.declare(fields);
	}

}
package com.liming.count_ReducerAggregator;

import storm.trident.operation.ReducerAggregator;
import storm.trident.tuple.TridentTuple;

public class CountReducerAggerator implements ReducerAggregator<Integer> {

	@Override
	public Integer init() {
		return 0;
	}

	@Override
	public Integer reduce(Integer curr, TridentTuple tuple) {
		return curr+1;
	}

}
package com.liming.count_ReducerAggregator;

import java.util.Iterator;
import java.util.Map;

import backtype.storm.tuple.Fields;
import storm.trident.operation.BaseFilter;
import storm.trident.operation.TridentOperationContext;
import storm.trident.tuple.TridentTuple;

public class PrintFilter extends BaseFilter{

	private TridentOperationContext context = null;
	@Override
	public void prepare(Map conf, TridentOperationContext context) {
		super.prepare(conf, context);
		this.context = context;
	}
	
	@Override
	public boolean isKeep(TridentTuple tuple) {
		StringBuffer buf = new StringBuffer();
		
		Fields fields = tuple.getFields();
		Iterator<String> it = fields.iterator();

		while(it.hasNext()){
			String key = it.next();
			Object value = tuple.getValueByField(key);
			buf.append("---"+key+":"+value+"---");
		}
		System.out.println(buf.toString());
		
		return true;
	}
	
}

测试结果如下:

案例6 - 测试Aggregator:

package com.liming.count_Aggregator;

import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.tuple.Fields;
import backtype.storm.utils.Utils;
import storm.trident.Stream;
import storm.trident.TridentTopology;

public class TridentDemo {
	public static void main(String[] args) {
		//--创建topology
		TridentTopology topology = new TridentTopology();
		
		Stream s = topology.newStream("xx", new SentenceSpout())
		.partitionAggregate(new Fields("name"), new CountAggerator(), new Fields("count"));
		s.each(s.getOutputFields(), new PrintFilter());
		
		//--提交到集群中运行
		Config conf = new Config();
		LocalCluster cluster = new LocalCluster();
		cluster.submitTopology("MyTopology", conf, topology.build());
		
		//--运行10秒钟后杀死Topology关闭集群
		Utils.sleep(1000 * 10);
		cluster.killTopology("MyTopology");
		cluster.shutdown();
	}
}
package com.liming.count_Aggregator;

import java.util.Map;

import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseRichSpout;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;
import backtype.storm.utils.Utils;

public class SentenceSpout extends BaseRichSpout{

	private SpoutOutputCollector collector = null;
	
	private Values [] values = {
			new Values("xiaoming","i am so shuai"),
			new Values("xiaoming","do you like me"),
			new Values("xiaohua","i do not like you"),
			new Values("xiaohua","you look like fengjie"),
			new Values("xiaoming","are you sure you do not like me"),
			new Values("xiaohua","yes i am"),
			new Values("xiaoming","ok i am sure")
	};
	
	private int index = 0;
	@Override
	public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
		this.collector = collector;
	}

	@Override
	public void nextTuple() {
		if(index<values.length){
			collector.emit(values[index]);
			index++;
		}
		Utils.sleep(100);
	}

	@Override
	public void declareOutputFields(OutputFieldsDeclarer declarer) {
		Fields fields = new Fields("name","sentence");
		declarer.declare(fields);
	}

}
package com.liming.count_Aggregator;

import backtype.storm.tuple.Values;
import storm.trident.operation.BaseAggregator;
import storm.trident.operation.TridentCollector;
import storm.trident.tuple.TridentTuple;

public class CountAggerator extends BaseAggregator<Integer> {

	int count = 0;
	@Override
	public Integer init(Object batchId, TridentCollector collector) {
		return null;
	}

	@Override
	public void aggregate(Integer val, TridentTuple tuple, TridentCollector collector) {
		count++;
	}

	@Override
	public void complete(Integer val, TridentCollector collector) {
		collector.emit(new Values(count));
	}
	
}
package com.liming.count_Aggregator;

import java.util.Iterator;
import java.util.Map;

import backtype.storm.tuple.Fields;
import storm.trident.operation.BaseFilter;
import storm.trident.operation.TridentOperationContext;
import storm.trident.tuple.TridentTuple;

public class PrintFilter extends BaseFilter{

	private TridentOperationContext context = null;
	@Override
	public void prepare(Map conf, TridentOperationContext context) {
		super.prepare(conf, context);
		this.context = context;
	}
	
	@Override
	public boolean isKeep(TridentTuple tuple) {
		StringBuffer buf = new StringBuffer();
		
		Fields fields = tuple.getFields();
		Iterator<String> it = fields.iterator();

		while(it.hasNext()){
			String key = it.next();
			Object value = tuple.getValueByField(key);
			buf.append("---"+key+":"+value+"---");
		}
		System.out.println(buf.toString());
		
		return true;
	}
	
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值