Changing speed of a sound file


原文地址:http://stackoverflow.com/questions/939904/changing-speed-of-a-sound-file

There are two options to speed up the playback of a sound file:

  • Increase the sample rate
  • Reduce the number of samples per unit of time.

In either of these methods, the increase in playback speed will have a corresponding change in the pitch of the sound.

Increasing the sample rate

Increasing the sample rate will increase the playback speed of the sound. For example, going from a 22 KHz sampling rate to 44 KHz will make the playback sound twice as fast as the original. In this method, the original sampling data is unaltered -- only the audio playback settings need to be changed.

Reduce the number of samples per unit of time

In this method, the playback sampling rate is kept constant, but the number of samples are reduced -- some of the samples are thrown out.

The naive approach to make the playback of the sound be twice the speed of the original is to remove every other sample, and playback at the original playback sampling rate.

However, with this approach, some of the information will be lost, and I would expect that some artifacts will be introduced to the audio, so it's not the most desirable approach.

Although I haven't tried it myself, the idea of averaging the samples to create a new sample to be a good approach to start with. This would seem to mean that rather than just throwing out audio information, it can be "preserved" to an extent by the averaging process.

As a rough idea of the process, here's a piece of pseudocode to double the speed of playback:

original_samples = [0, 0.1, 0.2, 0.3, 0.4, 0.5]

def faster(samples):
    new_samples = []
    for i = 0 to samples.length:
        if i is even:
            new_samples.add(0.5 * (samples[i] + samples[i+1]))
    return new_samples

faster_samples = faster(original_samples)

I've also posted an answered to the a question "Getting started with programmatic audio" where I went into some details about some basic audio manipulation that can be performed, so maybe that might be of interest as well.


内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
### 使用Python更改音频音调的方法 为了实现音频处理中的音调变化,可以利用`pydub`模块来完成这一任务。此模块允许执行多种音频处理操作,包括调整音频文件的属性如速度和音调[^1]。 下面是一个简单的例子,展示如何通过改变播放速率间接影响音频片段的音调: ```python from pydub import AudioSegment def change_pitch(audio_path, octaves=2): sound = AudioSegment.from_file(audio_path) new_sample_rate = int(sound.frame_rate * (2.0 ** octaves)) # Change pitch without changing speed. pitched_sound = sound._spawn( sound.raw_data, overrides={'frame_rate': new_sample_rate} ) return pitched_sound.set_frame_rate(44100) # Standardize frame rate. # Example usage: changed_audio = change_pitch("example.wav", octaves=-1) changed_audio.export("output.wav", format='wav') ``` 上述代码定义了一个函数`change_pitch()`用于接收一个音频路径作为输入参数,并接受可选参数octaves指定要移动多少八度来升高或降低音高。正数表示提高音调而负数则意味着降低它。该方法通过修改采样率的方式实现了音高的变换,在保持原始时长不变的情况下改变了频率特性从而达到变声效果。 值得注意的是,虽然这段脚本能够有效地改变给定音频样本的音调,但在实际应用中可能还需要考虑更多因素以确保最佳质量的结果。例如,对于更复杂的编辑需求或是希望获得更加自然的声音转换体验,则建议探索其他专门设计用来处理此类问题的专业工具库和服务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值