机器学习算法实战案例
机器学习不仅需要掌握好算法理论,同时也需要将所学算法应用实战,为解决实际问题而服务。在解决问题的过程中,不仅能加深对算法的理解,更能综合的使用所有数据挖掘以及人工智能的知识。
taon1607
这个作者很懒,什么都没留下…
展开
-
员工离职预测
1.项目目标在任何一家企业里,员工队伍的稳定性对于企业的发展都非常的重要。所以通过模型预测员工离职的价值就日益凸显出来了,该模型可以大大地提高HR部门的工作效率,同时也可以降低因人员变动而需要额外支出的人力成本。当然员工离职的原因都是多方面的,并非一个简单的数学模型所能预测的。在此,我们只是通过这个案例来掌握机器学习建模的完整里程。完成的问题解决流程请参考附件中的Notebook文档。2.数据集简介该数据集共收集了14999条员工数据,每位员工都记录了12个指标,其中11个为特征指标,1个为标签指标。原创 2020-06-17 14:24:00 · 1175 阅读 · 0 评论 -
科比职业生涯数据集分析
1.项目目标通过分析科比职业生涯比赛的相关数据,掌握Numpy, Pandas, Matplotlib, Seaborn等常用数据分析库的用法,掌握常规的数据预处理的方法以及特征工程。掌握建立随机森林模型,模型参数调整,构建最好的模型,预测测试数据,并保存测试数据的方法。2.科比生涯简介不论你是否看NBA,都应该听说过科比布莱恩特这个名字,它是最接近篮球之神乔丹的运动员。科比于1996年以13顺位的选秀身份进入联盟,一生都效力于洛杉矶湖人队。于2016年宣布退役,职业生涯获奖无数,5次NBA总冠军,2原创 2020-06-16 09:13:52 · 6317 阅读 · 0 评论 -
Titanic沉船数据集之获救乘客预测
项目目标:Titanic数据集是我们进入到机器学习领域中的第一个数据集,同我们学习编程的第一句程序语言(‘hello,world’)是一样的。通过对该数据集进行机器学习建模,掌握Numpy,Pandas,Matplotlib,Sklearn等常用数据分析库的使用,并掌握机器学习的完成流程数据预处理 - 建立基础模型 - 模型评估 - 调参 - 固定模型参数。背景介绍:泰坦尼克沉船是震惊世界的海难事件,1912年4月15日,在它的处女航中,撞上冰川后沉没。造成了超过1502人死亡,该事件也引起了全世界对原创 2020-06-14 21:33:23 · 759 阅读 · 0 评论