对于时序大数据来说,使用 MongoDB 或 HBase 一类的数据库,对比使用时序数据库 TDengine,在存储上到底能有哪些改变?本篇文章将为大家揭秘。
“总计定位数据量超过 11 亿条,数据压缩后 TDengine 数据目录占用磁盘大约 12G,整体压缩率达到了 3/100”,这是陕煤打造的全矿井数字化平台的存储效果:
这种压缩成绩并不是偶然现象,在另一家名为零跑科技的企业中,TDengine 的压缩性能也非常可观。
对于如零跑这样的车企来说,MongoDB 和 HBase 一直都是最普遍的数据库选择,随着业务的加速扩张,时序数据呈现爆发式增长,写入速度太慢、支撑成本过高等问题开始暴露。
经过 TDengine 的改造,压缩性能直接提升了 10 到 20 倍,解决了存储成本高的问题,同时还彻底改善了 HBase 入库不及时的缺陷,用更少的服务器资源入库更多的数据,在零跑前期的测试中,入库性能达到了 200 万每秒。
降低存储成本的秘籍指南!