TDengine技术解密
文章平均质量分 90
涛思数据(TDengine)
高性能、分布式的物联网、工业大数据平台
展开
-
TDengine 资深研发分享解决思路,长查询不再成为系统性能瓶颈!
本文探讨了如何应对和解决长查询问题,以提升 TDengine 在复杂查询场景下的表现。原创 2024-03-07 15:29:14 · 980 阅读 · 0 评论 -
新增流计算计数窗口,TDengine 3.2.3.0 八大板块功能更新
3.2.3.0 版本涉及到的更新内容包括流计算、传输压缩、授权机制、监控、数据接入、Explorer、性能优化、运维优化八大模块。原创 2024-03-07 11:07:12 · 1205 阅读 · 0 评论 -
TDengine 研发分享:利用 Windbg 解决内存泄漏问题的实践和经验
内存泄漏是一种常见的问题,它会导致程序的内存占用逐渐增加,最终导致系统资源耗尽或程序崩溃。这次内存泄漏问题发生在 Windows 下,TDengine 研发选择使用 Windbg 来解决问题。结果证明,在 Windows 下,使用 Windbg 也是一个不错的选择。原创 2024-02-29 09:39:10 · 1078 阅读 · 0 评论 -
了解这四个 3.0 版本的集群重要优化,助力企业级数据处理事半功倍
为了帮助企业更好地进行大数据处理,我们在此前 TDengine 3.x 系列版本中进行了几项与集群相关的优化和新功能开发,本文将对这几项重要优化进行详细阐述。原创 2024-01-29 17:38:47 · 753 阅读 · 0 评论 -
TDengine 企业级功能:存储引擎对多表低频场景优化工作分享
在本文中,TDengine 的资深研发将对多表低频场景写入性能的大幅优化工作进行深入分析介绍,并从实践层面剖析本次功能升级的具体作用。原创 2024-01-17 10:28:43 · 1080 阅读 · 0 评论 -
从 MQTT、InfluxDB 将数据无缝接入 TDengine,接入功能与 Logstash 类似
利用 TDengine Enterprise 和 TDengine Cloud 的数据接入功能,我们现在能够将 MQTT、InfluxDB 中的数据通过规则无缝转换至 TDengine 中,由于该功能在实现及使用上与 Logstash 类似,本文将结合 Logstash 为大家进行解读。原创 2023-12-05 14:03:32 · 360 阅读 · 0 评论 -
3.2.1.0 发布!时间转换函数+BI 集成+视图正式上线!
近日,TDengine 3.2.1.0 成功发布,本文将向大家简单介绍一下该版本涉及到的重大功能优化。原创 2023-12-05 10:02:40 · 343 阅读 · 0 评论 -
存储空间紧张?来看 TDengine TSZ 压缩算法如何显著提升压缩率
本篇文章中,我们将就如何在 TDengine 中开启 TSZ 压缩算法进行详细说明,并会针对 TSZ 压缩算法展开功能测试,为大家验证其在实际业务场景中的更优性能。原创 2023-11-28 09:46:50 · 157 阅读 · 0 评论 -
时序数据库 TDengine + 高级分析软件 Seeq,助力企业挖掘时序数据潜力
通过 TDengine Java connector,Seeq 可以轻松支持查询 TDengine 提供的时序数据,并提供数据展现、分析、预测等功能。本文将对此进行介绍。原创 2023-11-13 16:25:07 · 727 阅读 · 0 评论 -
传统库分表麻烦查询慢?TDengine 如何解决“搜狐基金”的应用难题
搜狐基金团队使用的 MySQL 数据库在面对海量数据时存在能力瓶颈,在此背景下,其决定基于 TDengine 尝试一下全新的方案。原创 2023-11-08 11:44:42 · 128 阅读 · 0 评论 -
TDengine 3.2.0.0 重磅发布!S3 存储 + IP 白名单正式上线
近日,TDengine 3.2.0.0 成功发布,本文将向大家简单介绍一下该版本涉及到的重大更新。原创 2023-11-02 17:44:42 · 181 阅读 · 0 评论 -
「直播回放」使用 PLC + OPC + TDengine,快速搭建烟草生产监测系统
本文以 TDengine Cloud 为例,介绍如何使用 PLC + OPC + TDengine 快速搭建烟草生产监测系统。原创 2023-11-01 10:55:15 · 647 阅读 · 0 评论 -
TDengine 资深研发整理:基于 SpringBoot 多语言实现 API 返回消息国际化
为了帮助开发者更好地进行 SpringBoot 的开发,避免开发盲点,我们将 TDengine 资深研发所做的内部分享——《SpringBoot 多语言支持方案》进行了相关整理,给到有需要的开发者参考。原创 2023-10-17 13:02:58 · 569 阅读 · 0 评论 -
TDengine+OpenVINO+AIxBoard,助力时序数据分类
本文将通过一个具体的案例,介绍 Intel 团队如何使用 TDengine 作为基础软件存储实验数据,并通过 TDengine 高效的查询能力在 OpenVINO 部署深度学习模型,最终在 AIxBoard 开发板上实时运行分类任务。原创 2023-10-08 16:25:29 · 1951 阅读 · 0 评论 -
一文教你如何发挥好 TDengine Grafana 插件作用
为了给用户打造更丰富的可视化方案,TDengine 在开源不久就提供了对 Grafana 的支持,此后也在不断升级改造 TDengine Grafana 插件,还推出了基于 Grafana 的零依赖监控解决方案 TDinsight。本篇文章将以 tdengine-datasource 为例介绍 Grafana 插件开发。原创 2023-10-08 14:05:36 · 313 阅读 · 0 评论 -
用 TDengine 3.0 碰到“内存泄露”?定位问题原因很关键
在本篇文章中,我们将从 GitHub 上的一个关于内存泄漏的 issue入手,和大家探讨下导致内存泄漏的原因,以及如何避免和定位内存泄漏。原创 2023-10-08 10:15:35 · 154 阅读 · 0 评论 -
万字解读|怎样激活 TDengine 最高性价比?
经过我们不断地打磨优化之后,TDengine 3.0 在性能、功能、稳定性各个方面均有大幅提升,已经从一款时序数据库蜕变成为高性能、云原生、分布式的物联网、工业大数据平台。原创 2023-10-07 14:20:07 · 551 阅读 · 0 评论 -
关于 TDengine 的论文资料都在这里了,等你来取!
这些高质量论文从侧面佐证了 TDengine 的高性能和众多优质特色、在技术创新和应用价值方面的卓越成效,形成了越来越丰富的第三方学术资料。原创 2023-09-28 11:37:58 · 131 阅读 · 0 评论 -
从索引实现上来看看你用的 TDengine 为什么这么快!
不同的索引区别在哪里?时序数据库又应该如何选择索引方式实现科学的数据结构?本文将以 TDengine 为例为大家展开分析。原创 2023-09-26 11:10:18 · 211 阅读 · 0 评论 -
关于 TDengine 3.0 数据订阅,你需要知道这些
TDengine 3.0 对数据订阅功能又进行了优化升级,本文将详细介绍其语法规则,方便开发者及企业使用。原创 2023-09-25 16:53:58 · 216 阅读 · 0 评论 -
单日 5000 亿行 / 900G 数据接入,TDengine 3.0 在中国地震台网中心的大型应用
本文将针对 TDengine 3.0 在地震领域的应用展开详细讲解。原创 2023-09-25 10:41:58 · 554 阅读 · 0 评论 -
一文告诉你为什么时序场景下 TDengine 数据订阅比 Kafka 好
在本文中,TDengine 研发人员详细揭秘了 TDengine 数据订阅的流程和具体实现。原创 2023-09-19 14:37:47 · 242 阅读 · 0 评论 -
与 TDengine 性能直接相关——3.0 的落盘机制优化及使用原则
写到数据库的数据总要保存起来——所以时序数据库(Time Series Database) TDengine 中经常提到的“落盘”,其实指的是内存中的数据持久化到存储的过程。3. 另外,如果是落盘线程这一侧到达瓶颈导致没有可用的缓冲池返回,则可以选择增加 numOfCommitThreads 参数值,这个参数代表每个节点上的落盘线程数量,默认等于二分之一的cpu核数。其次,提供手动落盘的命令。此外,由于时序数据的压缩是发生在落盘阶段的,因此对于我们统计数据的磁盘实际占用,计算压缩率都有很大的帮助。原创 2023-07-03 13:31:48 · 525 阅读 · 0 评论 -
关于 3.0 和 2.0 的数据文件差异以及性能优化思路
如果需要对数据库性能优化,了解数据文件的存储方式和工作原理是必要的。原创 2023-06-30 11:27:03 · 513 阅读 · 0 评论 -
查询性能:TDengine 最高达到了 InfluxDB 的 37 倍、 TimescaleDB 的 28.6 倍
5大类15小类查询类型全面对比!原创 2023-03-09 14:34:17 · 994 阅读 · 1 评论 -
写入性能:TDengine 最高达到 InfluxDB 的 10.3 倍,TimeScaleDB 的 6.74 倍
为了便于大家更好地阅读和理解,基于《 TSBS 的时序数据库(Time Series Database,TSDB)性能基准测试报告》内容,我们将从写入、查询及测试过程如何复现等几大维度输出系列文章。本篇文章将为大家解读三大时序数据库在写入性能上的差异点。原创 2023-03-03 09:59:01 · 1223 阅读 · 0 评论 -
TSBS 是什么?为什么时序数据库 TDengine 会选择它作为性能对比测试平台?
为了客观、准确、有效地评估 TDengine 3.0 的性能指标,我们决定使用 TSBS(Time Series Benchmark Suite)作为基准性能测试平台,针对 DevOps 场景的数据集对 TDengine 3.0 展开整体(包括写入、查询、存储、资源消耗等)性能评估。原创 2023-03-01 11:42:35 · 1240 阅读 · 0 评论 -
用户投稿——详解我了解的 TDengine 以及它所在的时序数据库“战场”
基于对 TDengine 的定义和理解,笔者将会在本篇文章中从 TDengine 能解决什么问题、它的优势与亮点、它与其它数据库的区别等维度展开详述,希望能帮助到对 TDengine 感兴趣的小伙伴。原创 2023-02-22 17:05:46 · 854 阅读 · 0 评论 -
TDengine 如何助力钢铁行业处理日均亿级的数据量?来看几个真实案例
本篇文章汇总了三大钢铁行业数据治理场景下的数据架构升级方案,供有相关业务需求的开发者参考。原创 2023-02-22 09:06:40 · 452 阅读 · 0 评论 -
TDengine 3.0.2.5 查询再优化!揭秘索引文件的工作原理
本文会在讲解 TDengine 的索引文件(.head 文件)工作原理的同时,介绍索引文件在最新的 TDengine 3.0.2.5 中的优化。原创 2023-02-14 15:35:56 · 695 阅读 · 0 评论 -
工业生产环境下,时序数据库 TDengine 如何打造全面有效的数字化监控?
一些煤矿企业已经开始进行数据架构转型实践,也取得了一些进展,值得一提的是,时序数据库(Time Series Database)在其中发挥了重要作用。本文将这些案例进行了相关汇总,供读者参考。原创 2023-02-07 15:47:30 · 648 阅读 · 1 评论 -
TDengine 时序数据特色查询语法详解,助力时序场景下的应用开发
TDengine 是专为时序数据而研发的大数据平台,存储和计算都针对时序数据的特点量身定制,在支持标准 SQL 的基础之上,还提供了一系列贴合时序业务场景的特色查询语法,极大地方便了时序场景的应用开发。TDengine 提供的特色查询包括数据切分查询和窗口切分查询,本文将从语法层面深入解读这两种特色查询。原创 2023-01-18 12:23:57 · 2370 阅读 · 0 评论 -
「技术直播」分布式数据库订阅功能的原理及实现
数据订阅是一种数据查询方式,其特点为:客户端执行一个查询语句后,可以增量形式,不断收到新到达服务端的、符合查询条件的数据。相比普通查询,订阅能够持续地、低延迟地将新写入的数据返回客户端。原创 2023-01-06 13:33:35 · 585 阅读 · 0 评论 -
时序数据库 TDengine 3.0 参数体系使用方式汇总
在日常使用 TDengine 时,参数是用户们无法绕开的重要一环。深入了解参数的属性,生效范围,查询更改方式等会让我们在使用数据库的过程中更加节时高效,也有助于我们更加深入地理解数据库的架构体系。原创 2023-01-04 18:01:08 · 679 阅读 · 0 评论 -
重磅!TDengine 3.2.0 正式发布
近日,TDengine 3.0.2.0 正式发布了。这是自今年 8 月份 TDengine 3.0 发布以来的第一个重要改进版本。原创 2022-12-20 16:18:25 · 1731 阅读 · 1 评论 -
TDengine3.0:解决高基数问题的时序数据库设计思路
TDengine 3.0 是第一个解决了高基数问题的时序数据库,本文将分享其设计思路。原创 2022-12-05 08:37:53 · 1458 阅读 · 0 评论 -
TDengine:国内4家大型物流公司的数据架构改造实例汇总
对于物流企业来说,如何高效地记录和处理车辆的轨迹信息、应对每天海量监控数据的采集和处理工作,对于项目整体的交付效率至关重要。诸多物流企业开始寻求数据架构的变革,特别是选择符合业务需求的时序数据库(Time Series Database,TSDB)产品,本篇文章汇总了国内四家大型物流公司的数据架构改造实例,给到读者参考。原创 2022-11-09 14:28:14 · 585 阅读 · 0 评论 -
零依赖监控解决方案:TDengine+Grafana落地实施
随着 TDengine 这款时序数据库(Time Series Database)在各个领域应用的越来越广泛,很多用户选择将 Grafana 与 TDengine 配合使用,以可视化的方式监控各项指标的运行状态。为了让用户更便捷地组合使用 TDengine+Grafana,我们不仅对 TDengine Grafana 插件进行了改造升级,还推出了基于 Grafana 的零依赖监控解决方案 TDinsight。原创 2022-11-08 16:24:06 · 1482 阅读 · 0 评论 -
TDengine:无模式写入行协议的四种方式
为了在数据采集项频繁变动的情况下保证用户仍然能够顺利地完成数据记录工作,TDengine 提供了三种无模式写入协议。本文将对无模式写入方式的主要处理逻辑、映射规则与变更处理等进行分析,便于用户理解与使用。原创 2022-11-04 09:25:22 · 901 阅读 · 1 评论 -
写给 MySQL 开发者的 TDengine 入门指南
事实证明,在时序数据场景下,无论是在存储空间、写入速度还是查询性能等各方面,TDengine 都存在数量级优势。原创 2022-11-02 16:33:01 · 5604 阅读 · 3 评论