- 博客(604)
- 资源 (66)
- 收藏
- 关注
原创 Doris RAG 代码速读与实现要点
本文基于Apache Doris实现RAG流程,涵盖向量入库、检索生成、服务部署等核心模块。项目通过配置Doris连接、Embedding/LLM模型等参数,支持Markdown文档的离线索引构建(包括文本清洗、分块、向量化及HNSW索引创建)。服务层提供FastAPI接口和CLI两种交互方式,实现查询增强、向量检索和LLM生成完整链路。特别设计了知识图谱实验模块,采用向量+SQL混合方式管理图数据。项目提供中英双语支持,可快速部署体验,并给出性能优化建议,为基于Doris的RAG应用开发提供参考实现。
2026-02-06 15:06:30
812
原创 Doris 与 OceanBase 物化视图对比分析
摘要: Doris与OceanBase在物化视图架构、刷新机制、查询优化等方面存在显著差异。Doris采用双轨制(同步/异步物化视图),支持实时同步和分布式存储;OceanBase仅支持异步视图,通过全量/增量刷新实现。Doris在实时分析、资源管控方面占优,而OceanBase更适合HTAP混合负载场景。选型需考虑实时性、HTAP需求及资源管理等因素,Doris适合纯分析场景,OceanBase更适合一体化HTAP系统。两者各有优势,需根据具体业务需求选择。
2026-01-30 16:50:23
317
原创 Python 完整学习计划
本文为Java开发者设计的Python系统学习计划,分为6个阶段,总周期12-18周。计划从基础语法与核心概念(1-2周)开始,重点对比Python与Java在动态类型、缩进语法、字符串操作等差异。随后涵盖面向对象、标准库、Web开发、数据处理等进阶内容。基础阶段详细讲解Python特有的列表推导式、字典操作、元组解包等特性,以及控制流程和函数定义方式。该计划特别适合有Java基础但希望系统掌握Python的开发者,通过对比两种语言差异帮助快速理解Python特性,最终达到全面掌握Python开发能力的目标
2026-01-20 16:53:48
673
原创 OceanBase SeekDB 详解:三行代码构建 AI 原生应用的“全能”数据库
摘要:OceanBase推出的开源AI原生数据库SeekDB,创新性地将向量检索、全文检索和结构化查询整合到单一引擎中,解决了多数据库管理难题。其轻量化设计(1C2G即可运行)、MySQL兼容性和内置AI功能(如embedding/rerank),显著简化了AI应用开发流程。支持Docker、RPM和嵌入式Python三种部署方式,通过混合搜索能力提升RAG准确率,是AI 2.0时代的高效数据解决方案。
2026-01-19 14:38:16
716
原创 Swift SFT Qwen-VL LoRA 微调指令详解
本文详细介绍了使用ModelScope Swift框架对Qwen-VL视觉语言大模型进行LoRA微调的完整脚本配置。该配置通过环境变量优化显存管理,设置多模态数据处理上限,并采用极节省显存的训练策略:单卡单条数据、梯度累积、冻结视觉模块、LoRA微调仅线性层等。参数解析涵盖模型路径、数据加载、训练核心设置、显存优化、LoRA配置、数据处理、优化器调整等全流程,提供了一套高效稳定的视觉语言模型微调方案,特别适合资源受限场景下的多模态模型适配。
2026-01-16 11:06:04
784
原创 使用 `ms-swift` 微调 Qwen3-VL-2B 详细指南
本文介绍了在AutoDL服务器上微调Qwen3-VL-2B-Instruct模型用于图片OCR识别的完整流程。首先说明了服务器配置选择建议,然后详细阐述了环境搭建、数据准备、微调命令执行等步骤。通过LoRA方法进行轻量级微调,生成适配车牌识别的模型,并展示了推理测试过程。文中强调实际应用需要更多训练数据,并提供了相关资源链接。整个过程展示了如何利用现有大模型快速实现特定OCR任务的定制化解决方案。
2026-01-15 17:19:58
540
原创 【深度硬核】大模型白盒蒸馏:原理、架构与实战详解
摘要:白盒蒸馏(White-box KD)通过利用大模型的内部状态(Logits、Hidden States)实现高效知识迁移,相比黑盒蒸馏能获得更好的性能和泛化能力。其核心是通过KL散度和MSE损失函数,将学生模型的输出层和中间层与教师模型对齐。实战中需处理维度不匹配问题并设计合理的损失权重,但面临显存消耗、教师模型适配等挑战,需采用梯度累积、混合精度训练等技术优化。白盒蒸馏为小模型赋予大模型能力提供了有效路径。
2026-01-14 16:58:25
458
原创 从巨人的肩膀起飞:大模型蒸馏(LLM Distillation)完全指南
大模型蒸馏技术:轻量化部署的关键方法 摘要:大模型蒸馏(Knowledge Distillation)通过将庞大"教师模型"的知识迁移到小型"学生模型",实现高性能轻量化部署。技术分为白盒蒸馏(利用Logits和隐层状态)和黑盒蒸馏(基于API生成文本),前者精度更高,后者适用性更广。核心方法包括:1)Logits蒸馏(通过KL散度匹配概率分布);2)指令蒸馏(合成<SFT数据训练);3)思维链蒸馏(CoT)传授推理过程。PyTorch代码示例展示了基于Hugg
2026-01-14 16:05:12
1184
原创 SVD 算法详解:给数据做个“CT扫描”
SVD(奇异值分解)是矩阵分解的数学基石,能将复杂数据拆解为三个核心矩阵:用户特征(U)、特征强度(Σ)和物品特征(V)。其本质是通过低秩近似实现有损压缩,保留主要特征而舍弃噪声。虽然标准SVD要求稠密矩阵,但推荐系统中常用其变种FunkSVD来处理稀疏数据。SVD不仅用于推荐系统,还广泛应用于图像压缩、降噪和PCA降维等领域,体现了对数据本质特征的精准提取与高效表达。
2026-01-14 14:38:29
454
原创 SGD 算法详解:蒙眼下山的寻宝者
本文对比了ALS(交替最小二乘法)和SGD(随机梯度下降)两种矩阵分解方法。SGD通过随机采样数据点,沿着误差梯度方向逐步调整参数,虽路径曲折但收敛速度快,适合增量更新和流式计算;而ALS则通过精确解析解实现并行计算,适合海量数据分布式处理。文章用“蒙眼下山”比喻SGD的工作原理,并给出参数更新公式,指出SGD以频繁更新换取效率,是推荐系统中快速优化的实用方法。最后通过对比表总结了两者的适用场景和优缺点。
2026-01-14 13:55:27
689
原创 ALS 算法详解:怎么解开“推荐系统”的死结?
本文用通俗易懂的方式介绍了推荐系统中常用的ALS(交替最小二乘法)算法。文章首先通过淘宝推荐、Netflix推荐等生活场景引出矩阵分解的任务:预测用户对未评分物品的偏好。核心思路是将用户-物品评分矩阵分解为用户特征矩阵和物品特征矩阵的乘积。为了优化预测效果,算法设置了包含误差平方和与正则化项的目标函数。ALS通过交替固定一个矩阵优化另一个矩阵的方式,将复杂的非凸优化问题转化为可求解的最小二乘问题,并支持并行计算。这种"冻结-优化"的交替过程不断迭代,直至模型收敛,最终实现准确推荐。
2026-01-14 13:47:40
601
原创 LoRA 训练过程详解:从 0 到“懂你”的进化之路
本文通过教AI写"李白风"古诗的案例,生动阐释了LoRA微调技术的运作机制。初始状态下,随机矩阵A和全零矩阵B无法有效工作,AI仅能输出平淡语句。通过反向传播和梯度下降,矩阵A逐渐学会提取"豪放派"特征(如月亮对应豪放因子),矩阵B则学会将特征转化为风格化输出。经过迭代训练后,系统能够将"大河"等输入精准转化为"君不见黄河之水天上来"等具有李白风格的输出。整个过程展示了LoRA如何通过损失函数指引、梯度雕刻和迭代积累,最终形成有
2026-01-14 11:37:51
556
原创 LoRA 矩阵分解:Rank(秩)与数值的确定机制
本文通过电影推荐系统类比,解释了LoRA(低秩适应)中的秩(Rank)设定和数值初始化机制。秩(r)是人工设定的超参数,控制模型的拟合能力和计算量(常用值为8-64)。矩阵A采用高斯随机初始化,矩阵B初始化为全零,确保训练开始时不影响原始模型性能。LoRA矩阵相乘产生的是权重增量(ΔW),而非直接评分,通过修正原始模型输出来实现特定任务适配。整个过程保持了模型原有功能的同时,通过低秩分解高效学习任务相关特征。
2026-01-14 11:14:57
856
原创 全网最全!Python、PyTorch、CUDA 与显卡版本对应关系速查表
全网最全!Python、PyTorch、CUDA 与显卡版本对应关系速查表
2026-01-09 09:58:17
5162
原创 揭秘:不用 Conda,Python “光杆司令“ 是如何指挥 GPU 跑大模型的?
揭秘:不用 Conda,Python "光杆司令" 是如何指挥 GPU 跑大模型的?
2026-01-08 16:58:29
860
原创 信用评分卡模型 (Credit Scorecard):给你的信用“打个分”
信用评分卡模型 (Credit Scorecard):给你的信用“打个分”
2025-12-29 10:23:30
845
原创 传统行业数字化突围:银行/保险/制造如何制定精准的Push用户分层策略?
传统行业数字化突围:银行/保险/制造如何制定精准的Push用户分层策略?
2025-12-29 10:03:35
764
原创 2025技术实战总结:大模型如何重塑软件开发与硬件设计—从百页文档秒变代码到芯片抗干扰设计
大模型如何重塑软件开发与硬件设计—从百页文档秒变代码到芯片抗干扰设计
2025-12-27 15:53:16
1044
原创 K折交叉验证 (K-Fold Cross-Validation):给 AI 来一场“轮岗实习”
K折交叉验证 (K-Fold Cross-Validation):给 AI 来一场“轮岗实习”
2025-12-26 15:18:20
619
rtsp-server实现摄像头实时播放(兼容各厂家摄像头&主流浏览器)
2022-10-10
TrueLicense实现系统证书授权
2022-10-11
rtsp-server-vue引用示例
2022-10-10
从0到1使用ES实现昼伏夜出算法完整项目
2022-10-10
policycoreutils-python-2.5-29.el17.x86 audit-libs-2.8.4-4.el7.x8
2022-06-22
arthas-packaging-3.5.4-bin.zip
2021-09-14
OBS.rar开源录屏软件
2021-08-23
Flink SQL Cookbook on Zeppelin搭建相关依赖
2024-12-24
使用脚本实现hadoop-yarn-flink自动化部署
2024-12-07
flink-faker0.2.0-0.4.0
2024-10-29
phpadmin docker镜像
2024-07-29
Ollama 是一个开源框架,专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计 官网下载比较慢,特提供本下载地址
2024-07-05
CentOS7 X86-64 mysql客户端安装包,附安装说明
2024-06-13
apache-dolphinscheduler-3.2.1-src.tar.gz、bin.tar.gz
2024-05-15
flink-1.19.0-bin-scala-2.12.tgz flink-1.16.3-bin-scala-2.12.tgz
2024-05-21
一键安装docker环境:docker、docker-compose
2024-05-15
NPS内网穿透工具,服务器端(CentOS)+客户端(CentOS、Windows)
2024-04-30
Java实现对系统CPU、内存占用率的控制
2024-01-25
docker、docker-compose一键安装,适配CentOS、银河麒麟、统信UOS等
2024-01-10
sigar-amd64-winnt.dllt实现windows操作系统CPU、内存等系统资源监控
2023-11-10
Redis离线安装资源汇总,autoconf、gcc、jemalloc、m4、redis
2022-10-24
nginx端口转发?
2024-06-03
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅