素数

素数(质数)

试除法判定素数

#include<iostream>
using namespace std;

bool isP(int x)
{
	if(x<=1) return false;
	for(int i=2;i<=x/i;++i) 
    {
		if(x%i==0)return false;
	}
	return true;
}

int main() {
	int n;
	scanf("%d",&n);
	int a;
	for(int i=0;i<n;++i) 
    {
		scanf("%d",&a);
		cout<<(isP(a)?"Yes":"No")<<endl;
	}
	return 0;
}

分解质因数

#include <iostream>
using namespace std;
int main() 
{

	int n;
	cin>>n;
	while(n--) 
    {
		int a;
		cin>>a;
		for(int i=2;i<=a/i;++i) 
        { //大于sqrt(a)的质因数最多一个
			int s=0;
			while(a%i==0) a/=i,s++;
			if(s) cout<<i<<" "<<s<<endl;
		}
		if(a>1)cout<<a<<" "<<1<<endl;
		cout<<endl;
	}
	return 0;
}

线性筛(欧拉筛) O ( n ) O(n) O(n)

保证合数被他的最小质因数筛掉(推荐)

#include <iostream>
using namespace std;

const int maxn = 1e6+10;
bool st[maxn];
int pr[maxn],tot;

void linear_sieve(int n) 
{
	for(int i=2;i<=n;++i) 
    {
		if(st[i] == false) pr[tot++] = i;
		for(int j=0;pr[j]*i<=n;++j) 
        {
			st[pr[j]*i] = true;
			if(i % pr[j] == 0) break;
		}
	}
}

int main()
{
	
	int n;
	cin >> n;
	linear_sieve(n);
	cout<<tot<<endl;
	return 0;
}

埃式筛 O ( n l o g l o g n ) O(nloglogn) O(nloglogn)

每个合数都会被他它的质因数筛一次

#include <iostream>
using namespace std;

const int maxn = 1e6+10;
bool st[maxn];
int pr[maxn],tot;

void linear_sieve(int n) 
{
	for(int i=2;i<=n;++i) 
    {
		if(st[i] == false)
        {
            pr[tot++] = i;
            for(int j=i+i;j<=n;j+=i)
                st[j] = true;
        }
	}
}

int main()
{
	
	int n;
	cin >> n;
	linear_sieve(n);
	cout<<tot<<endl;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值