素数(质数)
试除法判定素数
#include<iostream>
using namespace std;
bool isP(int x)
{
if(x<=1) return false;
for(int i=2;i<=x/i;++i)
{
if(x%i==0)return false;
}
return true;
}
int main() {
int n;
scanf("%d",&n);
int a;
for(int i=0;i<n;++i)
{
scanf("%d",&a);
cout<<(isP(a)?"Yes":"No")<<endl;
}
return 0;
}
分解质因数
#include <iostream>
using namespace std;
int main()
{
int n;
cin>>n;
while(n--)
{
int a;
cin>>a;
for(int i=2;i<=a/i;++i)
{ //大于sqrt(a)的质因数最多一个
int s=0;
while(a%i==0) a/=i,s++;
if(s) cout<<i<<" "<<s<<endl;
}
if(a>1)cout<<a<<" "<<1<<endl;
cout<<endl;
}
return 0;
}
线性筛(欧拉筛) O ( n ) O(n) O(n)
保证合数被他的最小质因数筛掉(推荐)
#include <iostream>
using namespace std;
const int maxn = 1e6+10;
bool st[maxn];
int pr[maxn],tot;
void linear_sieve(int n)
{
for(int i=2;i<=n;++i)
{
if(st[i] == false) pr[tot++] = i;
for(int j=0;pr[j]*i<=n;++j)
{
st[pr[j]*i] = true;
if(i % pr[j] == 0) break;
}
}
}
int main()
{
int n;
cin >> n;
linear_sieve(n);
cout<<tot<<endl;
return 0;
}
埃式筛 O ( n l o g l o g n ) O(nloglogn) O(nloglogn)
每个合数都会被他它的质因数筛一次
#include <iostream>
using namespace std;
const int maxn = 1e6+10;
bool st[maxn];
int pr[maxn],tot;
void linear_sieve(int n)
{
for(int i=2;i<=n;++i)
{
if(st[i] == false)
{
pr[tot++] = i;
for(int j=i+i;j<=n;j+=i)
st[j] = true;
}
}
}
int main()
{
int n;
cin >> n;
linear_sieve(n);
cout<<tot<<endl;
return 0;
}