组合数

求组合数 C a b   m o d   p C_a^b\ mod\ p Cab mod p

小数据范围 1 ≤ a , b ≤ 2000 1\leq a,b\leq 2000 1a,b2000

递 推 式 : C a b = C a − 1 b + C a − 1 b − 1 递推式:C_a^b = C_{a-1}^b + C_{a-1}^{b-1} :Cab=Ca1b+Ca1b1

初始化 C [ m a x n ] [ m a x n ] C[maxn][maxn] C[maxn][maxn] 数组 C [ i ] [ j ] = C i j C[i][j] = C_i^j C[i][j]=Cij

const int maxn = 2005; 
const int mod = 1e9+7;
int C[maxn][maxn];
void init()//init函数
{
	for (int i=0;i<maxn;++i)
		for (int j=0;j<=i;++j)
			if (!j) C[i][j] = 1;
			else C[i][j] = (C[i-1][j] + C[i-1][j-1]) % mod;
}

大数据 1 ≤ a , b ≤ 1 0 5 1\leq a,b \leq 10^5 1a,b105

公 式 : C a b = a ! b ! ( a − b ) ! 公 式: C_a^b = \frac{a!}{b!(a-b)!} :Cab=b!(ab)!a!

预处理 a ! 和 b ! − 1 a! 和 b!^{-1} a!b!1

f a c t [ i ] 表 示 i ! fact[i]表示i! fact[i]i!

i n f a c t [ i ] 表 示 i ! − 1   ( i 的 阶 乘 的 逆 元 ) infact[i]表示i!^{-1} \ (i的阶乘的逆元) infact[i]i!1 (i)

由费马小定理 a p − 1 ≡ 1 ( m o d   p )    ( p 为 质 数 且 p % a ≠ 0 ) a^{p-1}\equiv1(mod\ p)\ \ (p为质数 且 p\%a ≠ 0) ap11(mod p)  (pp%a=0)

两 边 同 时 除 以 a   ,    a p − 2 ≡ a − 1 ( m o d   p ) 两边同时除以a\ ,\ \ a^{p-2}\equiv a^{-1}(mod\ p) a ,  ap2a1(mod p)

所以 a − 1 ( m o d   p ) 是 a p − 2 ( m o d   p ) a^{-1}(mod\ p)是 a^{p-2}(mod\ p) a1(mod p)ap2(mod p)

typedef long long ll;
const int maxn = 1e5+5;
const int mod = 1e9+7;
int fact[maxn]; 
int infact[maxn];


//快速幂求逆元 inverse element
int ie(int a,int b,int p)
{
	int res = 1;
	a %= p;
	while(b)
	{
		if(b&1) res = (ll)res*a%p;
		a = (ll)a*a%mod;
		b>>=1; 
	}
	return res;
}
//初始化函数
void init()
{
    fact[0] = infact[0] = 1;
	for(int i=1;i<maxn;++i)
	{
		fact[i] = (ll)fact[i-1]*i%mod;//求阶乘
		infact[i] = (ll)infact[i-1]*ie(i,mod-2,mod) % mod; //求阶乘的逆元
	}
}
int main()
{
	int a,b;
    cin>>a>>b;
    int res = (ll)fact[a] * infact[b] % mod * infact[a-b] % mod;
    printf("%d\n",res);
	return 0;
}

超大数据 1 ≤ a , b ≤ 1 0 18 1\leq a,b \leq 10^{18} 1a,b1018 , 1 ≤ p ≤ 1 0 5 1\leq p \leq 10^5 1p105

卢 卡 斯 定 理 : C a b = C a % p b % p ∗ C ⌊ a / p ⌋ ⌊ b / p ⌋ 卢 卡 斯 定 理:C_a^b = C_{a\%p}^{b\%p}*C_{\lfloor a/p\rfloor}^{\lfloor b/p\rfloor} :Cab=Ca%pb%pCa/pb/p

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long ll;
int p; //模数 (全局变量)

//快速幂求逆元
int ie(int a,int b)
{
	int res = 1;
	a %= p;
	while(b)
	{
		if(b&1) res = (ll)res * a % p;
		a = (ll)a*a%p;
		b>>=1;
	}
	return res;
}
//求C[a,b]
int C(int a,int b)
{
	if(b>a) return 0;
	int res = 1;
	for(int i=1,j=a;i<=b;++i,--j)
	{
		res = (ll)res * j % p;			//分子 
		res = (ll)res * ie(i,p-2) % p; //分母 
	}
	return res;
}

int lucas(ll a,ll b)
{
	if(a<p && b<p) return C(a,b);
	else return (ll)C(a%p,b%p) * lucas(a/p,b/p) % p;
}

int main()
{
	int n;cin>>n;
	while(n--)
	{
		ll a,b;
		cin>>a>>b>>p;
		cout<<lucas(a,b)<<endl;
	}
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值