Model Heterogeneity (模型异质性)联邦学习中:假设每个参与的客户端都需要使用具有相同架构的本地模型,更容易聚合。但在实际中,每个客户端可能以独特的方式设计自己的局部模型架构,且并不愿共享模型细节。Partial Heterogeneity(部分异质性)有些客户端使用相同的模型结构,有些则不同。通过聚类算法,参与的客户可以被分成许多簇,即每个簇内的结构是相同的。然后用模型参数的加权平均,来实现簇内模型的聚合。Complete Heterogeneity (完全异质性)所有参与者模型的网络结构是完全不同的。aim:需要为每个客户端学习一个独特的模型,该模型可以更好地处理不同的数据分布,但最终可能导致高学习成本和低通信效率。