用于推荐系统的SVD算法python实现

本文介绍了如何使用numpy从头实现SVD算法,特别关注处理缺失值的问题,以适用于推荐系统。相较于Scipy和Scikit中考虑缺失值的SVD实现,本文的方法更直观且能保持数据准确性。
摘要由CSDN通过智能技术生成

SVD算法python实现


之前看到一篇实现SVD算法的blog,但是实现方法没有用到矩阵。为了更直观简便高效的实现SVD算法,在这里基于numpy重新写了一遍。


原blog转载较多,已经找不到原作者了,参考以下地址:

http://blog.csdn.net/recsysml/article/details/12287513


这里用到的算法是优化下面这个目标函数:



代码如下:

参数: mat - 输入矩阵, feature - latent factor数量

def svd(mat, feature, steps=500, gama=0.02, lamda=0.3):
    slowRate = 0.99
    preRmse = 1000000000.0
    nowRmse = 0.0

    user_feature = numpy.matrix(numpy.random.rand(mat.shape[0], feature))
    item_feature = numpy.matrix(numpy.random.rand(mat.shape[1], feature))

    for step in range(steps):
        rmse = 0.0  
        n = 0  
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值