以前写过1~3维的最远曼哈顿距离,(本博客第一篇,代码奇丑)这次写N维,可作模版。
复杂度:O(n*2^m) (n个点,m维)
原理: |x1-y1|+|x2-y2|+... ...+|xm-ym| 去掉绝对值后x、y分别都有2^m种状态,枚举之。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int dem=5; //维数
const int maxxn=100005;
const double inf=1e200;
struct Point{
double x[dem];
}p[maxxn];
int n;
double minx[1<<dem], maxx[1<<dem];
double solve(){
int i, j, k, t, tmp=1<<dem;
double s, ans=-inf;
for(i=0; i<tmp; i++){
minx[i]=inf;
maxx[i]=-inf;
}
for(i=0; i<n; i++){
for(j=0; j<tmp; j++){
t=j;s=0;
for(k=0; k<dem; k++){
if(t&1)
s+=p[i].x[k];
else s-=p[i].x[k];
t>>=1;
}
if(maxx[j]<s)maxx[j]=s;
if(minx[j]>s)minx[j]=s;
}
}
for(i=0; i<tmp; i++){
if(maxx[i]-minx[i]>ans)
ans=maxx[i]-minx[i];
}
return ans;
}
int main(){
//freopen("1.txt", "r", stdin);
int i, j;
while(scanf("%d", &n)!=EOF){
for(i=0; i<n; i++){
for(j=0; j<dem; j++)
scanf("%lf", &p[i].x[j]);
}
printf("%.2f\n", solve());
}
return 0;
}