poj 2926 Requirements N维最远曼哈顿距离

以前写过1~3维的最远曼哈顿距离,(本博客第一篇,代码奇丑)这次写N维,可作模版。

复杂度:O(n*2^m)  (n个点,m维)

原理: |x1-y1|+|x2-y2|+... ...+|xm-ym| 去掉绝对值后x、y分别都有2^m种状态,枚举之。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int dem=5;        //维数
const int maxxn=100005;
const double inf=1e200;
struct Point{
    double x[dem];
}p[maxxn];
int n;
double minx[1<<dem], maxx[1<<dem];

double solve(){
    int i, j, k, t, tmp=1<<dem;
    double s, ans=-inf;
    for(i=0; i<tmp; i++){
        minx[i]=inf;
        maxx[i]=-inf;
    }
    for(i=0; i<n; i++){
        for(j=0; j<tmp; j++){
            t=j;s=0;
            for(k=0; k<dem; k++){
                if(t&1)
                s+=p[i].x[k];
                else s-=p[i].x[k];
                t>>=1;
            }
            if(maxx[j]<s)maxx[j]=s;
            if(minx[j]>s)minx[j]=s;
        }
    }
    for(i=0; i<tmp; i++){
        if(maxx[i]-minx[i]>ans)
        ans=maxx[i]-minx[i];
    }
    return ans;
}
int main(){
    //freopen("1.txt", "r", stdin);
    int i, j;
    while(scanf("%d", &n)!=EOF){
        for(i=0; i<n; i++){
            for(j=0; j<dem; j++)
                scanf("%lf", &p[i].x[j]);
        }
        printf("%.2f\n", solve());
    }
    return 0;
}


 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值