【刷leetcode】7.斐波那契数列

本文介绍了如何通过优化算法来降低斐波那契数列计算的空间复杂度,从O(n)降至O(1),并提供了改进后的代码实现,实现了在给定限制下求解斐波那契数列第n项的问题。
摘要由CSDN通过智能技术生成

写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项。斐波那契数列的定义如下:
F(0) = 0, F(1) = 1 F(N) = F(N - 1) + F(N - 2), 其中 N > 1. 斐波那契数列由 0 和1 开始,之后的斐波那契数就是由之前的两数相加而得出。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

示例 1: 输入:n = 2 输出:1
示例 2: 输入:n = 5 输出:5 提示: 0 <= n <= 100

思路:

还是先用老办法,用一个数组存放每一项的值😀

代码:

class Solution {
    public int fib(int n) {
        //1.判断特殊情况
        if(n == 0){
            return 0;
        }
        //n是从0开始的。所以数组长度是n+1
        int[] arr = new int[n+1];
        arr[0] = 0;
        arr[1] = 1;
        //给数组的每一项赋值
        for(int i=2; i<n+1; i++){
            arr[i] = (arr[i-1] + arr[i-2])%1000000007;
        }
        //返回第n项
        return arr[n];
    }
}

复杂度分析:

时间复杂度:O(n)
空间复杂度:O(n)

改进思路:

参照了leetcode的官方题解。
我们只需要得到第n项。第n项是由前两项相加得到的。我们只需要在数列中从头开始两两向后移动计算,中间的那些数不用专门保存下来。可以节省空间复杂度。

代码

class Solution {
    public int fib(int n) {
        //1.判断特殊情况
        if(n == 0){
            return 0;
        }
        if(n == 1){
            return 1;
        }
        //2.设两个变量不停向前移动
        int a = 0;
        int b = 1;
        //3.不断后移
        //这是前两个变量相加在一起的和
        int sum = 1;
        //n=1时,相加后a向后移动一位,正好是第1个元素
        //n=2时,相加后a移动,正好是第2个元素
        //n=n时,相加后a移动,正好是第n个元素
        for(int i=0; i<n; i++){
            sum = (a+b) % 1000000007;
            a = b;
            b = sum;
        }
        //4.返回a
        return a;
    }
}

复杂度分析:

时间复杂度:O(n)。for循环计算sum
空间复杂度:常量大小的额外空间,O(1)

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值