母函数

母函数的一般形式

1.普通型:

G(x)=1+a1x1+a2x2+...+anxn+... G ( x ) = 1 + a 1 x 1 + a 2 x 2 + . . . + a n x n + . . .

2.指数型:

G(x)=1+x11!+x22!+...+xnn!+... G ( x ) = 1 + x 1 1 ! + x 2 2 ! + . . . + x n n ! + . . .

<script type="math/tex; mode=display" id="MathJax-Element-8759"></script>
<script type="math/tex; mode=display" id="MathJax-Element-8760"></script>

一些常用的Taylor展开式

1 普通型:

11x=k=0xk 1 1 − x = ∑ k = 0 ∞ x k

(1ax)1=k=0akxk ( 1 − a x ) − 1 = ∑ k = 0 ∞ a k x k

2 指数型:
1)

ex=k=0xkk! e x = ∑ k = 0 ∞ x k k !

2)

ex=k=0(1)xxkk! e − x = ∑ k = 0 ∞ ( − 1 ) x ∗ x k k !

3)

12(exex)=k=0x2k+1(2k+1)! 1 2 ( e x − e − x ) = ∑ k = 0 ∞ x 2 k + 1 ( 2 k + 1 ) !

4)

12(ex+ex)=k=0x2k(2k)! 1 2 ( e x + e − x ) = ∑ k = 0 ∞ x 2 k ( 2 k ) !

<script type="math/tex; mode=display" id="MathJax-Element-16654"></script>
<script type="math/tex; mode=display" id="MathJax-Element-16655"></script>
例:求n位十进制数出现偶数个5的数的个数

an为出现偶数个5的数的个数, bn b n 为出现奇数个5的数的个数
an=9an1+bn1 a n = 9 a n − 1 + b n − 1
bn=9bn1=an1 b n = 9 b n − 1 = a n − 1
a1=8,b1=1 a 1 = 8 , b 1 = 1

设母函数
Ga(x)=a1+a2x+a3x2+... G a ( x ) = a 1 + a 2 x + a 3 x 2 + . . .
Gb(x)=b1+b2x+b3x2+... G b ( x ) = b 1 + b 2 x + b 3 x 2 + . . .

x:a2=9a1+b1 x : a 2 = 9 a 1 + b 1
x2:a3=9a2+b2 x 2 : a 3 = 9 a 2 + b 2
x3:a4=9a3+b3 x 3 : a 4 = 9 a 3 + b 3
... . . .
求和得
Ga(x)a1=9xGa(x)+xGb(x) G a ( x ) − a 1 = 9 x G a ( x ) + x G b ( x )
整理得
(19x)Ga(x)xGb(x)=a1=8 ( 1 − 9 x ) G a ( x ) − x G b ( x ) = a 1 = 8
同理可得
(19x)Gb(x)xGa(x)=b1=1 ( 1 − 9 x ) G b ( x ) − x G a ( x ) = b 1 = 1
解方程可得
Ga(x)=71x+8(18x)(110x) G a ( x ) = − 71 x + 8 ( 1 − 8 x ) ( 1 − 10 x )
分解成部分分式,
A,B A , B 使得 A18x+B110x=Ga(x) A 1 − 8 x + B 1 − 10 x = G a ( x ) 成立
解得 A=72,b=92 A = 7 2 , b = 9 2

Ga(x)=12(718x+9110x) ∴ G a ( x ) = 1 2 ( 7 1 − 8 x + 9 1 − 10 x )
taylor展开

(1ax)1=k=0akxk ( 1 − a x ) − 1 = ∑ k = 0 ∞ a k x k

Ga(x)=12k=0(78k+910k)xk G a ( x ) = 1 2 ∑ k = 0 ∞ ( 7 ∗ 8 k + 9 ∗ 10 k ) x k
an=728n+9210k ∴ a n = 7 2 ∗ 8 n + 9 2 ∗ 10 k

<script type="math/tex; mode=display" id="MathJax-Element-14641"></script>
<script type="math/tex; mode=display" id="MathJax-Element-14642"></script>

线性常系数齐次递推关系

递推关系:

an+c1an1+c2an2+...+ckank=0 a n + c 1 a n − 1 + c 2 a n − 2 + . . . + c k a n − k = 0

设母函数为

G(x)=a0x0+a1x1+a2x2+...+anxn+... G ( x ) = a 0 x 0 + a 1 x 1 + a 2 x 2 + . . . + a n x n + . . .

可得

xk(ak+c1ak1+...+cka0)=0 x k ( a k + c 1 a k − 1 + . . . + c k a 0 ) = 0

其中第 i 项的和为

cixi(G(x)j=0ki1aixi) c i x i ( G ( x ) − ∑ j = 0 k − i − 1 a i x i )

总和为

i=0k(cixi(G(x)j=0ki1aixi))=0 ∑ i = 0 k ( c i x i ( G ( x ) − ∑ j = 0 k − i − 1 a i x i ) ) = 0

整理得

G(x)=ki=0(cixiki1j=0aixi)ki=0cixi G ( x ) = ∑ i = 0 k ( c i x i ∑ j = 0 k − i − 1 a i x i ) ∑ i = 0 k c i x i

设分子 ki=0(cixiki1j=0aixi)=P(x) ∑ i = 0 k ( c i x i ∑ j = 0 k − i − 1 a i x i ) = P ( x )

G(x)=P(x)ki=0cixi G ( x ) = P ( x ) ∑ i = 0 k c i x i

单独看分母,提取 xk x k ,设 m=x1 m = x − 1 ,得

xk(mk+c1mk1+...+ck1m1+ck) x k ( m k + c 1 m k − 1 + . . . + c k − 1 m 1 + c k )

特征多项式(可直接通过递推关系写出):

C(x)=xk+c1xk1+...+ck1x+ck C ( x ) = x k + c 1 x k − 1 + . . . + c k − 1 x + c k

特征多项式可进行因式分解

C(x)=(xa1)(xa2)...(xak) C ( x ) = ( x − a 1 ) ( x − a 2 ) . . . ( x − a k )

分母得

xk(1a1x1)(1a2x1)...(1akx1) x k ( 1 − a 1 x − 1 ) ( 1 − a 2 x − 1 ) . . . ( 1 − a k x − 1 )

原式得

G(x)=P(x)(1a1x)(1a2x)...(1akx) G ( x ) = P ( x ) ( 1 − a 1 x ) ( 1 − a 2 x ) . . . ( 1 − a k x )

分类讨论:
1)无重根

待定系数 A1,A2...Ak A 1 , A 2 . . . A k

G(x)=i=1kAi1aix G ( x ) = ∑ i = 1 k A i 1 − a i x

利用下式taylor展开可得

(1ax)1=k=0akxk ( 1 − a x ) − 1 = ∑ k = 0 ∞ a k x k

an=i=1kAiani a n = ∑ i = 1 k A i a i n

A1,A2...Ak A 1 , A 2 . . . A k 可通过初始值列线性方程组求解

2)有重根
β β C(x)的重根,可得

G(x)=i=1kAi(1βx)i G ( x ) = ∑ i = 1 k A i ( 1 − β x ) i

利用二项式定理可得

(a+b)n=C0nan+C1nan1b+...+Cnnbn ( a + b ) n = C n 0 a n + C n 1 a b n − 1 + . . . + C n n b n

an=i=1kAjCnn+i1βn a n = ∑ i = 1 k A j C n + i − 1 n β n

an=(i=1kAini1)βn a n = ( ∑ i = 1 k A i n i − 1 ) β n

<script type="math/tex; mode=display" id="MathJax-Element-11213"></script>
<script type="math/tex; mode=display" id="MathJax-Element-11214"></script>
例:求 Sn=nk=0k2 S n = ∑ k = 0 n k 2

解:
Sn=12+22+...+n2
可得
1) SnSn1=n2 S n − S n − 1 = n 2
2) Sn1Sn2=(n1)2 S n − 1 − S n − 2 = ( n − 1 ) 2
3) Sn2Sn3=(n2)2 S n − 2 − S n − 3 = ( n − 2 ) 2
4) Sn3Sn4=(n3)2 S n − 3 − S n − 4 = ( n − 3 ) 2

1) - 2)得
Sn2Sn1+Sn2=2n1 S n − 2 S n − 1 + S n − 2 = 2 n − 1
2) - 3)得
Sn12Sn2+Sn3=2n3 S n − 1 − 2 S n − 2 + S n − 3 = 2 n − 3

可得
Sn3Sn1+3Sn2Sn3=2 S n − 3 S n − 1 + 3 S n − 2 − S n − 3 = 2
同理可得
Sn13Sn2+3Sn3Sn4=2 S n − 1 − 3 S n − 2 + 3 S n − 3 − S n − 4 = 2

Sn4Sn1+6Sn24Sn3+Sn4=0 ∴ S n − 4 S n − 1 + 6 S n − 2 − 4 S n − 3 + S n − 4 = 0
S0=0,S1=1,S2=5,S4=14 S 0 = 0 , S 1 = 1 , S 2 = 5 , S 4 = 14
至此,可用母函数特征多项式求出各项。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值