A. Team Olympiad

在Berland首都的一所学校中,每位学生擅长编程、数学或体育之一。为参加科学十项全能奥林匹克竞赛,教师们需将学生组成每队三人的团队,每个团队必须包含一名程序员、一名数学家和一名运动员。此问题探讨如何最大化团队数量并给出具体组建方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The School №0 of the capital of Berland has n children studying in it. All the children in this school are gifted: some of them are good at programming, some are good at maths, others are good at PE (Physical Education). Hence, for each child we know value ti:
ti = 1, if the i-th child is good at programming,
ti = 2, if the i-th child is good at maths,
ti = 3, if the i-th child is good at PE
Each child happens to be good at exactly one of these three subjects.
The Team Scientific Decathlon Olympias requires teams of three students. The school teachers decided that the teams will be composed of three children that are good at different subjects. That is, each team must have one mathematician, one programmer and one sportsman. Of course, each child can be a member of no more than one team.
What is the maximum number of teams that the school will be able to present at the Olympiad? How should the teams be formed for that?
Input
The first line contains integer n (1 ≤ n ≤ 5000) — the number of children in the school. The second line contains n integers t1, t2, …, tn (1 ≤ ti ≤ 3), where ti describes the skill of the i-th child.
Output
In the first line output integer w — the largest possible number of teams. Then print w lines, containing three numbers in each line. Each triple represents the indexes of the children forming the team. You can print both the teams, and the numbers in the triplets in any order. The children are numbered from 1 to n in the order of their appearance in the input. Each child must participate in no more than one team. If there are several solutions, print any of them.
If no teams can be compiled, print the only line with value w equal to 0.
Examples
Input
7
1 3 1 3 2 1 2
Output
2
3 5 2
6 7 4
Input
4
2 1 1 2
Output
0

#include<stdio.h>
#include<math.h>
int cmp(const void*a,const void*b)
{
return *(int*)b-*(int*)a;
}
int main()
{
int i,j,k1=0,k2=0,k3=0,n,n1=0,n2=0,n3=0,judge=0;
int c[5001],a[5001],b[5001],d[5001];
scanf("%d",&n);
for(i=0;i<n;i++)
{
 scanf("%d",&c[i]);
 if(c[i]==1)
 {
  a[n1]=i+1;
  n1++;
 }
 else if(c[i]==2)
 {
  b[n2]=i+1;
  n2++;
 }
 else
 {
  d[n3]=i+1;
  n3++;
 }
 }
 if(n1>n2)
 {
  n1=n1^n2;
  n2=n1^n2;
  n1=n1^n2;
 }
 if(n1>n3)
 {
  n1=n1^n3;
  n3=n1^n3;
  n1=n1^n3;
 }
 if(n2>n3)
 {
  n2=n2^n3;
  n3=n2^n3;
  n2=n2^n3;
 }
 printf("%d\n",n1);
for(i=0;i<n1;i++)
{
 printf("%d %d %d\n",a[i],b[i],d[i]);
 
}
return 0;
} 
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值