A. Team Olympiad

在Berland首都的一所学校中,每位学生擅长编程、数学或体育之一。为参加科学十项全能奥林匹克竞赛,教师们需将学生组成每队三人的团队,每个团队必须包含一名程序员、一名数学家和一名运动员。此问题探讨如何最大化团队数量并给出具体组建方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The School №0 of the capital of Berland has n children studying in it. All the children in this school are gifted: some of them are good at programming, some are good at maths, others are good at PE (Physical Education). Hence, for each child we know value ti:
ti = 1, if the i-th child is good at programming,
ti = 2, if the i-th child is good at maths,
ti = 3, if the i-th child is good at PE
Each child happens to be good at exactly one of these three subjects.
The Team Scientific Decathlon Olympias requires teams of three students. The school teachers decided that the teams will be composed of three children that are good at different subjects. That is, each team must have one mathematician, one programmer and one sportsman. Of course, each child can be a member of no more than one team.
What is the maximum number of teams that the school will be able to present at the Olympiad? How should the teams be formed for that?
Input
The first line contains integer n (1 ≤ n ≤ 5000) — the number of children in the school. The second line contains n integers t1, t2, …, tn (1 ≤ ti ≤ 3), where ti describes the skill of the i-th child.
Output
In the first line output integer w — the largest possible number of teams. Then print w lines, containing three numbers in each line. Each triple represents the indexes of the children forming the team. You can print both the teams, and the numbers in the triplets in any order. The children are numbered from 1 to n in the order of their appearance in the input. Each child must participate in no more than one team. If there are several solutions, print any of them.
If no teams can be compiled, print the only line with value w equal to 0.
Examples
Input
7
1 3 1 3 2 1 2
Output
2
3 5 2
6 7 4
Input
4
2 1 1 2
Output
0

#include<stdio.h>
#include<math.h>
int cmp(const void*a,const void*b)
{
return *(int*)b-*(int*)a;
}
int main()
{
int i,j,k1=0,k2=0,k3=0,n,n1=0,n2=0,n3=0,judge=0;
int c[5001],a[5001],b[5001],d[5001];
scanf("%d",&n);
for(i=0;i<n;i++)
{
 scanf("%d",&c[i]);
 if(c[i]==1)
 {
  a[n1]=i+1;
  n1++;
 }
 else if(c[i]==2)
 {
  b[n2]=i+1;
  n2++;
 }
 else
 {
  d[n3]=i+1;
  n3++;
 }
 }
 if(n1>n2)
 {
  n1=n1^n2;
  n2=n1^n2;
  n1=n1^n2;
 }
 if(n1>n3)
 {
  n1=n1^n3;
  n3=n1^n3;
  n1=n1^n3;
 }
 if(n2>n3)
 {
  n2=n2^n3;
  n3=n2^n3;
  n2=n2^n3;
 }
 printf("%d\n",n1);
for(i=0;i<n1;i++)
{
 printf("%d %d %d\n",a[i],b[i],d[i]);
 
}
return 0;
} 
内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值