原题如下:
找出数组中出现次数超过一半的数,现在有一个数组,已知一个数出现的次数超过了一半,请用O(n)的复杂度的算法找出这个数。
这道题在网上已经有了很多种解法,如果先排序在查找,那么n/2这个位置一定就只要找的这个数字,但是排序的复杂度已经超过O(n)了。用hash_map和一些高空间占用的算法就不说了,现在说另一个思路,是利用这个数出现次数超过一半这个特性。
虽然也看到别人提及,但是总觉得说的不够清楚,当然,也可能是我的理解能力比较差。以下是用我的理解说出来。
因为要找的数字出现的次数超过一半,那么这个数字和除它之外的任何一个数字两两相抵,剩下的数字,肯定就是要找的数字。
可以开一个同样大小的bitset,用来记录相抵的操作,这个不是重点,看到一个更好的算法如下:
使用两个临时变量k和flag,k记录的是当前的数组的值,从数组0开始,flag记录的是k这个值出现的次数。
如果数组数值等于k,flag++,如果数组值不等于k,则flag--,依次用数组的值和k相比较;如果flag为0了,则说明两两数抵消完,就将数组的下一个值赋予k,继续遍历剩余数组。最后,只有那个超过一半的数不会减退到0。具体的算法不写了,只是感觉这个算法精妙的多,对时间复杂度和空间复杂度都是用的最小。