此题对应leetcode1143题,解题方法为动态规划。
动态规划解题思路:
- 确定子问题,判断子问题是否独立
- 确定状态和选择
- 确定状态转移方程
使用两个指针i,j分别指向两个字符串的某个字符,那么text1[0,i]和text2[0,j]的最长公共子序列由dp[i-1,j-1]和text1的第i个字符和text2的第j个字符是否相等确定,即子问题独立,此时状态就是当前两个字符串的索引,选择就是text1的第i+1个字符和text2的第j+1个字符是否相等,那么状态转移方程即为:
text1的第i+1个字符和text2的第j+1个字符相等时,dp[i,j] = dp[i-1,j-1] + 1,text1的第i+1个字符和text2的第j+1个字符不相等时,dp[i,j] = Math.max(dp[i - 1,j],dp[i,j - 1])
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
int n1 = text1.length();
int n2 = text2.length();
char[] t1 = text1.toCharArray();
char[] t2 = text2.toCharArray();
int[][] dp = new int[n1 + 1][n2 + 1];
for(int i = 1; i <= n1; i++){
for(int j = 1; j <= n2; j++){
if(t1[i - 1] == t2[j - 1]){
dp[i][j] = dp[i - 1][j - 1] + 1;
}else{
dp[i][j] = Math.max(dp[i- 1][j],dp[i][j - 1]);
}
}
}
return dp[n1][n2];
}
}