动态规划-最长公共子序列

在这里插入图片描述

此题对应leetcode1143题,解题方法为动态规划。
动态规划解题思路:

  1. 确定子问题,判断子问题是否独立
  2. 确定状态和选择
  3. 确定状态转移方程

使用两个指针i,j分别指向两个字符串的某个字符,那么text1[0,i]和text2[0,j]的最长公共子序列由dp[i-1,j-1]和text1的第i个字符和text2的第j个字符是否相等确定,即子问题独立,此时状态就是当前两个字符串的索引,选择就是text1的第i+1个字符和text2的第j+1个字符是否相等,那么状态转移方程即为:
text1的第i+1个字符和text2的第j+1个字符相等时,dp[i,j] = dp[i-1,j-1] + 1,text1的第i+1个字符和text2的第j+1个字符不相等时,dp[i,j] = Math.max(dp[i - 1,j],dp[i,j - 1])

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int n1 = text1.length();
        int n2 = text2.length();
        char[] t1 = text1.toCharArray();
        char[] t2 = text2.toCharArray();
        int[][] dp = new int[n1 + 1][n2 + 1];
        for(int i = 1; i <= n1; i++){
            for(int j = 1; j <= n2; j++){
                if(t1[i - 1] == t2[j - 1]){
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                }else{
                    dp[i][j] = Math.max(dp[i- 1][j],dp[i][j - 1]);
                }
            }
        }
        return dp[n1][n2];
    }
}
最长公共子序列问题(Longest Common Subsequence,简称LCS)是指在两个序列中找到一个最长的公共子序列,其中一个序列的所有元素按原序列中出现的顺序排列,而另一个序列中的元素则不要求按原序列中出现的顺序排列。 动态规划方法可以很好地解决LCS问题。设A和B是两个序列,LCS(A,B)表示A和B的最长公共子序列。则可以设计如下的状态转移方程: 当A和B的末尾元素相同时,LCS(A,B) = LCS(A-1,B-1) + 1。 当A和B的末尾元素不同时,LCS(A,B) = max(LCS(A-1,B), LCS(A,B-1))。 其中,LCS(A-1,B-1)表示A和B的末尾元素相同时的情况,LCS(A-1,B)表示A的最后一个元素不在最长公共子序列中,而B中的最后一个元素在最长公共子序列中的情况,LCS(A,B-1)表示B的最后一个元素不在最长公共子序列中,而A中的最后一个元素在最长公共子序列中的情况。 根据这个状态转移方程,可以使用动态规划算法来求解LCS问题。具体方法是,构建一个二维数组dp,其中dp[i][j]表示A前i个元素和B前j个元素的LCS。初始化dp[0][j]和dp[i][0]为0,然后按照上述状态转移方程进行递推,最终得到dp[lenA][lenB],其中lenA和lenB分别表示A和B的长度。dp[lenA][lenB]即为A和B的最长公共子序列的长度。要找到具体的最长公共子序列,可以从dp[lenA][lenB]开始,按照状态转移方程反向推导出每个元素,即可得到最长公共子序列。 LCS问题是动态规划算法的经典应用之一,时间复杂度为O(n*m),其中n和m分别为A和B的长度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值