动态规划-最长公共子序列

在这里插入图片描述

此题对应leetcode1143题,解题方法为动态规划。
动态规划解题思路:

  1. 确定子问题,判断子问题是否独立
  2. 确定状态和选择
  3. 确定状态转移方程

使用两个指针i,j分别指向两个字符串的某个字符,那么text1[0,i]和text2[0,j]的最长公共子序列由dp[i-1,j-1]和text1的第i个字符和text2的第j个字符是否相等确定,即子问题独立,此时状态就是当前两个字符串的索引,选择就是text1的第i+1个字符和text2的第j+1个字符是否相等,那么状态转移方程即为:
text1的第i+1个字符和text2的第j+1个字符相等时,dp[i,j] = dp[i-1,j-1] + 1,text1的第i+1个字符和text2的第j+1个字符不相等时,dp[i,j] = Math.max(dp[i - 1,j],dp[i,j - 1])

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int n1 = text1.length();
        int n2 = text2.length();
        char[] t1 = text1.toCharArray();
        char[] t2 = text2.toCharArray();
        int[][] dp = new int[n1 + 1][n2 + 1];
        for(int i = 1; i <= n1; i++){
            for(int j = 1; j <= n2; j++){
                if(t1[i - 1] == t2[j - 1]){
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                }else{
                    dp[i][j] = Math.max(dp[i- 1][j],dp[i][j - 1]);
                }
            }
        }
        return dp[n1][n2];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值