#1097 : 最小生成树一·Prim算法

#1097 : 最小生成树一·Prim算法
时间限制:10000ms
单点时限:1000ms
内存限制:256MB
描述
最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可以拥有不止一个城市了!

但是,问题也接踵而来——小Hi现在手上拥有N座城市,且已知这N座城市中任意两座城市之间建造道路所需要的费用,小Hi希望知道,最少花费多少就可以使得任意两座城市都可以通过所建造的道路互相到达(假设有A、B、C三座城市,只需要在AB之间和BC之间建造道路,那么AC之间也是可以通过这两条道路连通的)。

提示:不知道为什么Prim算法和Dijstra算法很像呢Σ(っ °Д °;)っ 。
输入
每个测试点(输入文件)有且仅有一组测试数据。

在一组测试数据中:

第1行为1个整数N,表示小Hi拥有的城市数量。

接下来的N行,为一个N*N的矩阵A,描述任意两座城市之间建造道路所需要的费用,其中第i行第j个数为Aij,表示第i座城市和第j座城市之间建造道路所需要的费用。

对于100%的数据,满足N<=10^3,对于任意i,满足Aii=0,对于任意i, j满足Aij=Aji, 0<Aij<10^4.

输出
对于每组测试数据,输出1个整数Ans,表示为了使任意两座城市都可以通过所建造的道路互相到达至少需要的建造费用。

样例输入
5
0 1005 6963 392 1182
1005 0 1599 4213 1451
6963 1599 0 9780 2789
392 4213 9780 0 5236
1182 1451 2789 5236 0
样例输出
4178
/*
Prim算法的基本思想:
先从所有点中取一个点(一般加入1号点)加入集合v,其他点放入集合w。
从w中,找 w中的点 与 v中的点 连起来的边中 的权值最小 的那个点(w集合中的点),所找到的那条权值最小的边为最小生成树的一条边,将那个点加入v集合,然后将它清出w集合,重复上述操作,直到w集合为空
*/
AC_code:

#include <bits/stdc++.h>
#define LL long long
using namespace std;
int a[1005][1005];
vector<int>v,w;
LL sum ,aim,s,e,pos;
LL Prim()
{
    while(!w.empty())
    {
        vector<int>::iterator it = w.begin();
        aim = 0x3f3f3f3f;
        for(int i = 0; i < v.size(); i++)
        {
            for(int j = 0; j < w.size(); j++)
            {
                if(a[v[i]][w[j]] < aim)
                {
                    aim = a[v[i]][w[j]];
                    s = v[i];
                    e = w[j];
                    pos = j;
                }
            }
        }
        sum += a[s][e];
        v.push_back(e);
        w.erase((it+pos));
    }
    return sum;
}
int main()
{
    int N;
    scanf("%d",&N);
    v.push_back(1);
    for(int i = 1; i <= N; i++)
    {
        for(int j = 1; j <= N; j++)
        {
            scanf("%d",&a[i][j]);
        }
        if(i!=1)
            w.push_back(i);
    }
    printf("%lld\n",Prim());
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Leo Bliss

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值