又见斐波那契数列(矩阵构造+矩阵快速幂)

//补题~~~
链接:https://ac.nowcoder.com/acm/problem/15666
来源:牛客网

时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 32768K,其他语言65536K
64bit IO Format: %lld
在这里插入图片描述
示例1
输入
复制

4
1
2
3
100

输出
复制

1
16
57
558616258

/*
1.矩阵构造~
2.矩阵快速幂~

[f(n-2),f(n-1),n^3,n^2,n,1] * A = [f(n-1),f(n),(n+1)^3 ,(n+1)^2,n+1,1]
A = [
0,1,0,0,0,0,
1,1,0,0,0,0,
0,1,1,0,0,0,
0,1,3,1,0,0,
0,1,3,2,1,0,
0,1,1,1,1,1
]
[f(0),f(1),8,4,2,1] * A = [f(1),f(2),27,9,3,1]
[f(0),f(1),8,4,2,1] * A^n = [f(n),f(n=1),f(n+1)^3,f(n+1)^2,n+1,1]

*/
ac_code:

#include <stdio.h>
#define ll long long
const ll mod = 1e9+7;
struct mat
{
    ll m[10][10];
}a,e;
mat operator*(const mat x,const mat y)
{
    mat ans;
    ll tmp;
    for(int i = 0; i < 6; i++)
    {
        for(int j = 0; j < 6; j++)
        {
            tmp = 0;
            for(int k = 0; k < 6; k++)
            {
                tmp = (tmp%mod+(x.m[i][k]%mod*y.m[k][j]%mod)%mod)%mod;
            }
            ans.m[i][j] = tmp;
        }
    }
    return ans;
}
mat quickPow(mat a,ll b)
{
    mat res = e;
    while(b)
    {
        if(b&1)
            res = res*a;
        a = a*a;
        b >>= 1;
    }
    return res;
}
int main()
{
    for(int i = 0; i < 6; i++)
    {
        e.m[i][i] = 1;
        a.m[i][1] = 1;
        a.m[5][i] = 1;
    }
    a.m[5][0] = 0;
    a.m[1][0] = 1;
    a.m[2][2] = 1;
    a.m[3][2] = 3;
    a.m[4][2] = 3;
    a.m[3][3] = 1;
    a.m[4][3] = 2;
    a.m[4][4] = 1;
    ll c[10] = {0,1,8,4,2,1};
    ll t;
    scanf("%lld",&t);
    while(t--)
    {
        ll n;
        scanf("%lld",&n);
        mat tp = quickPow(a,n);
        ll val = 0; //f(n)
        for(int i = 0; i < 6; i++)
        {
            val = (val%mod + tp.m[i][0]*c[i]%mod)%mod;
        }
        printf("%lld\n",val);
    }
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
斐波数列矩阵快速实现方式如下所示: 首先,我们定义一个2阶矩阵: \[ M = \begin{bmatrix} 1\enspace 1\\ 1\enspace 0 \end{bmatrix} \] 然后,根据斐波数列的递推公式\[ F_n = F_{n-1} + F_{n-2} \],我们可以将这个公式抽象成矩阵运算的形式: \[ \begin{bmatrix} F_{n} \\ F_{n-1} \end{bmatrix} = M^{n-1} \cdot \begin{bmatrix} F_1 \\ F_0 \end{bmatrix} \] 其中,\[ F_1 \]和\[ F_0 \]分别表示斐波数列的初始值。 通过快速运算的思想,我们可以将指数为正整数的运算复杂度从\[ O(n) \]降低到\[ O(\log_2 n) \],而且矩阵乘法运算也符合结合律,因此可以使用矩阵快速来计算斐波数列。 代码实现如下: ```python import numpy as np def fibonacci_matrix_power(n, f1, f0): M = np.array([[1, 1], [1, 0]]) # 定义2阶矩阵M result = np.array([[f1], [f0]]) # 初始值矩阵 power = np.eye(2, dtype=int) # 运算的初始值为单位矩阵 while n > 0: if n % 2 == 1: power = np.dot(power, M) # 如果n是奇数,将M乘到结果矩阵上 M = np.dot(M, M) # 将M自乘,n每次右移一位 n //= 2 result = np.dot(power, result) # 最终的结果矩阵 return result # 返回斐波数列的第n项 # 测试示例 n = 10 f1 = 1 f0 = 0 fib_n = fibonacci_matrix_power(n, f1, f0) print(fib_n) ``` 这段代码通过矩阵快速的方式计算斐波数列的第n项,其中参数n为要计算的项数,f1和f0分别为斐波数列的初始值。运行结果为斐波数列的第n项的值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Leo Bliss

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值