链接:https://ac.nowcoder.com/acm/problem/23871
来源:牛客网
时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 131072K,其他语言262144K
64bit IO Format: %lld
题目描述
Chino的数学很差,因此Cocoa非常担心。这一天,Cocoa准备教Chino学习圆与直线的位置关系。
众所周知,直线和圆有三种位置关系:相离、相切、相割,主要根据圆心到直线的距离来判定。
现在我们来看看作业吧:
示例1
输入
复制
2 2 1 3 1 2
输出
复制
1
证明:|BD| x |BE| = |AB| ^ 2 - |AE| ^ 2 (‘ ^ 2 ’这里代表平方)
解:
证明:
如下图所示,过A点作直线CB的垂线,交点为O,连接AO,AE,AB
由勾股定理得:
AE ^ 2 = EO ^ 2 + AO ^ 2
AB ^ 2 = BO ^ 2 + AO ^ 2
所以:
AE ^ 2 - EO ^ 2 = AB ^ 2 - BO ^ 2
因为:
BO = BD + DO
DO = EO
所以:
BO = BD + EO
AE ^ 2 - EO ^ 2 = AB ^ 2 - ( BD + EO) ^ 2
AE ^ 2 - EO ^ 2 = AB ^ 2 - BD ^ 2 -2BD x EO - EO ^ 2
AE ^ 2 = AB ^ 2 - BD ^ 2 - 2BD x EO
又因为:
EO = (1/2)DE
DE = BE - BD
所以:
AE ^ 2 = AB ^ 2 - BD ^ 2 - 2BD x(1/2)x( BE - BD)
AE ^ 2 = AB ^ 2 - BD x BE
所以:|BD| x |BE| = |AB| ^ 2 - |AE| ^ 2
AC_code:
way1:
根据上述证明:
#include <bits/stdc++.h>
using namespace std;
int main()
{
double x0,y0,r,x1,y1,y2;
cin>>x0>>y0>>r>>x1>>y1>>y2;
double ans = pow(y1-y0,2) + pow(x1-x0,2) - pow(r,2);
cout.precision(0);
cout<<fixed<<ans<<endl;
return 0;
}
way2:
直接算出D,E两点坐标
圆方程:(x-a) ^ 2 + (y - b) ^ 2 = r ^ 2
直线方程: y = kx + b
…
#include <bits/stdc++.h>
using namespace std;
int main()
{
double x0,y0,r,x1,y1,y2;
cin>>x0>>y0>>r>>x1>>y1>>y2;
double k = (y1-y2)/x1;
double a = pow(k,2) + 1.0;
double b = 2*(-x0+k*(y2-y0));
double c = pow(x0,2)+pow(y2-y0,2)-pow(r,2);
double tmp = pow(b,2)-4*a*c;
double t = sqrt(tmp);
//cout<<k<<" "<<a<<" "<<b<<" "<<c<<" "<<tmp<<" "<<t<<endl;
double aim_x1 = (-b-t)/(2*a);
double aim_x2 = (-b+t)/(2*a);
double aim_y1 = k*aim_x1 + y2;
double aim_y2 = k*aim_x2 + y2;
//cout<<aim_x1<<" "<<aim_y1<<" "<<aim_x2<<" "<<aim_y2<<endl;
double BD = sqrt(pow(aim_y2-y1,2)+pow(aim_x2-x1,2));
double BE = sqrt(pow(aim_y1-y1,2)+pow(aim_x1-x1,2));
double ans = BD*BE;
//cout<<BD<<" "<<BE<<endl;
cout.precision(0);
cout<<fixed<<ans<<endl;
return 0;
}