Chino with Geometry(数学,计算几何,记录一下推导证明)

链接:https://ac.nowcoder.com/acm/problem/23871
来源:牛客网

时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 131072K,其他语言262144K
64bit IO Format: %lld
题目描述
Chino的数学很差,因此Cocoa非常担心。这一天,Cocoa准备教Chino学习圆与直线的位置关系。
众所周知,直线和圆有三种位置关系:相离、相切、相割,主要根据圆心到直线的距离来判定。

现在我们来看看作业吧:
在这里插入图片描述
在这里插入图片描述
示例1
输入
复制

2 2 1 3 1 2

输出
复制

1

证明:|BD| x |BE| = |AB| ^ 2 - |AE| ^ 2 (‘ ^ 2 ’这里代表平方)
解:
证明:
如下图所示,过A点作直线CB的垂线,交点为O,连接AO,AE,AB
在这里插入图片描述
由勾股定理得:
AE ^ 2 = EO ^ 2 + AO ^ 2
AB ^ 2 = BO ^ 2 + AO ^ 2
所以:
AE ^ 2 - EO ^ 2 = AB ^ 2 - BO ^ 2
因为:
BO = BD + DO
DO = EO
所以:
BO = BD + EO
AE ^ 2 - EO ^ 2 = AB ^ 2 - ( BD + EO) ^ 2
AE ^ 2 - EO ^ 2 = AB ^ 2 - BD ^ 2 -2BD x EO - EO ^ 2
AE ^ 2 = AB ^ 2 - BD ^ 2 - 2BD x EO
又因为:
EO = (1/2)DE
DE = BE - BD
所以:
AE ^ 2 = AB ^ 2 - BD ^ 2 - 2BD x(1/2)x( BE - BD)
AE ^ 2 = AB ^ 2 - BD x BE
所以:|BD| x |BE| = |AB| ^ 2 - |AE| ^ 2

AC_code:
way1:
根据上述证明:

#include <bits/stdc++.h>
using namespace std;
int main()
{
    double x0,y0,r,x1,y1,y2;
    cin>>x0>>y0>>r>>x1>>y1>>y2;
    double ans = pow(y1-y0,2) + pow(x1-x0,2) - pow(r,2);
    cout.precision(0);
    cout<<fixed<<ans<<endl;
    return 0;
}

way2:
直接算出D,E两点坐标
圆方程:(x-a) ^ 2 + (y - b) ^ 2 = r ^ 2
直线方程: y = kx + b

#include <bits/stdc++.h>
using namespace std;
int main()
{
    double x0,y0,r,x1,y1,y2;
    cin>>x0>>y0>>r>>x1>>y1>>y2;
    double k = (y1-y2)/x1;
    double a = pow(k,2) + 1.0;
    double b = 2*(-x0+k*(y2-y0));
    double c = pow(x0,2)+pow(y2-y0,2)-pow(r,2);
    double tmp = pow(b,2)-4*a*c;
    double t = sqrt(tmp);
    //cout<<k<<" "<<a<<" "<<b<<" "<<c<<" "<<tmp<<" "<<t<<endl;
    double aim_x1 = (-b-t)/(2*a);
    double aim_x2 = (-b+t)/(2*a);
    double aim_y1 = k*aim_x1 + y2;
    double aim_y2 = k*aim_x2 + y2;
    //cout<<aim_x1<<" "<<aim_y1<<" "<<aim_x2<<" "<<aim_y2<<endl;
    double BD = sqrt(pow(aim_y2-y1,2)+pow(aim_x2-x1,2));
    double BE = sqrt(pow(aim_y1-y1,2)+pow(aim_x1-x1,2));
    double ans = BD*BE;
    //cout<<BD<<" "<<BE<<endl;
    cout.precision(0);
    cout<<fixed<<ans<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Leo Bliss

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值