mapreduce
天边tbdp
一个码农,从业后端快十载
展开
-
mapreduce 作业优化
map阶段优化参数:io.sort.mb(default 100)当map task开始运算,并产生中间数据时,其产生的中间结果并非直接就简单的写入磁盘。而是会利用到了内存buffer来进行已经产生的部分结果的缓存,并在内存buffer中进行一些预排序来优化整个map的性能。每一个map都会对应存在一个内存buffer,map会将已经产生的部分结果先写入到该转载 2014-05-19 23:25:33 · 873 阅读 · 0 评论 -
实现MapReduce多文件自定义输出
http://pan.baidu.com/s/1kT0usSZ转载 2014-06-05 15:25:27 · 854 阅读 · 0 评论 -
MapReduce实现推荐系统
1.开发环境:Windows 2008 64bitJava 1.6.0_30MyEclipse 6.5环境部署见:http://www.linuxidc.com/Linux/2014-02/96528.htm2.Hadoop集群环境:Oracle Linux Enterprise 5.9Java 1.6.0_18Hadoop:hado转载 2014-06-05 15:50:09 · 1504 阅读 · 0 评论 -
MapReduce高级编程之自定义InputFormat
InputFormat是MapReduce中一个很常用的概念,它在程序的运行中到底起到了什么作用呢?InputFormat其实是一个接口,包含了两个方法:public interface InputFormat {InputSplit[]getSplits(JobConf job, int numSplits) throws IOException;RecordReader转载 2014-06-05 15:52:44 · 618 阅读 · 0 评论 -
Hadoop之MapReduce 分析
摘要:MapReduce是Hadoop的又一核心模块,从MapReduce是什么,MapReduce能做什么以及MapReduce的工作机制三方面认识MapReduce。关键词:Hadoop MapReduce 分布式处理面对大数据,大数据的存储和处理,就好比一个人的左右手,显得尤为重要。Hadoop比较适合解决大数据问题,很大程度上依赖其大数据存储系统,即HDFS和大数据转载 2014-06-05 15:46:21 · 828 阅读 · 0 评论 -
Hadoop MapReduce作业的生命周期
首先,我们来看如下的一张图:作业的整个运行过程分为5个步骤:1、作业的提交和初始化。用户提交作业后,由JobClient实例将作业相关信息(jar包、配置文件xml、分片元信息等)上传到HDFS。然后,JobClient通过RPC通知JobTracker。JobTracker接收到新作业请求后,由作业调度模块对作业进行初始化,为作业创建一个JobInProg转载 2014-06-05 16:49:34 · 1001 阅读 · 0 评论 -
Hadoop之MapReduce框架心跳机制分析
1、概述MapReduce框架中的master/slave心跳机制是整个集群运作的基础,是沟通TaskTracker和JobTracker的桥梁。TaskTracker周期性地调用心跳RPC函数,汇报节点和任务运行状态信息。MapReduce框架中通过心跳机制可以实现给TaskTracker分配任务、使JobTracker能够及时获取各个节点的资源使用情况和任务运行状态信息、判断TaskT转载 2014-06-05 15:43:14 · 1724 阅读 · 0 评论