位错的应力场

位错的应力场

假设

位错周围的弹性应力场弹性体假设模型:

  1. 晶体是完全弹性体;
  2. 晶体是各向同性的;
  3. 晶体中没有空隙,由连续介质组成。

柱坐标系下的线弹性力学

平衡方程

∂ σ r r ∂ r + 1 r ∂ σ θ r ∂ θ + ∂ σ z r ∂ z + σ r r − σ θ θ r = 0 ∂ σ r θ ∂ r + 1 r ∂ σ θ θ ∂ θ + ∂ σ z θ ∂ z + 2 σ r θ r = 0 ∂ σ r z ∂ r + 1 r ∂ σ θ z ∂ θ + ∂ σ z z ∂ z + σ r z r = 0 } \begin{align} \left. \begin{aligned} &\dfrac{\partial \sigma_{rr}}{\partial r} +\dfrac{1}{r}\dfrac{\partial \sigma_{\theta r }}{\partial \theta} +\dfrac{\partial \sigma_{zr}}{\partial z} +\dfrac{\sigma_{rr}-\sigma_{\theta\theta}}{r}=0\\ &\dfrac{\partial \sigma_{r\theta}}{\partial r} +\dfrac{1}{r}\dfrac{\partial \sigma_{\theta \theta }}{\partial \theta} +\dfrac{\partial \sigma_{z\theta}}{\partial z} +\dfrac{2\sigma_{r\theta}}{r}=0\\ &\dfrac{\partial \sigma_{rz}}{\partial r} +\dfrac{1}{r}\dfrac{\partial \sigma_{\theta z }}{\partial \theta} +\dfrac{\partial \sigma_{zz}}{\partial z} +\dfrac{\sigma_{rz}}{r}=0\\ \end{aligned} \right\} \end{align} rσrr+r1θσθr+zσzr+rσrrσθθ=0rσrθ+r1θσθθ+zσzθ+r2σrθ=0rσrz+r1θσθz+zσzz+rσrz=0

几何方程

ε r r = ∂ u r ∂ r ε θ θ = u r r + 1 r ∂ u θ ∂ θ ε z z = ∂ u z ∂ z ε r θ = ε θ r = 1 2 ( 1 r ∂ u r ∂ θ + ∂ u θ ∂ r − u θ r ) ε r z = ε z r = 1 2 ( ∂ u r ∂ z + ∂ u z ∂ r ) ε z θ = ε θ z = 1 2 ( ∂ u θ ∂ z + 1 r ∂ u z ∂ θ ) } \begin{align} \left. \begin{aligned} &\varepsilon _{rr}=\dfrac{\partial u_{r}}{\partial r}\\ &\varepsilon _{\theta\theta}=\dfrac{u_{r}}{r}+\dfrac{1}{r}\dfrac{\partial u_{\theta}}{\partial \theta}\\ &\varepsilon _{zz}=\dfrac{\partial u_{z}}{\partial z}\\ &\varepsilon _{r\theta}=\varepsilon _{\theta r}=\dfrac{1}{2}(\dfrac{1}{r}\dfrac{\partial u_{r}}{\partial \theta}+\dfrac{\partial u_{\theta}}{\partial r}-\dfrac{u_{\theta}}{r})\\ &\varepsilon _{rz}=\varepsilon _{z r}=\dfrac{1}{2}(\dfrac{\partial u_{r}}{\partial z}+\dfrac{\partial u_{z}}{\partial r})\\ &\varepsilon _{z\theta}=\varepsilon _{\theta z}=\dfrac{1}{2}(\dfrac{\partial u_{\theta}}{\partial z}+\dfrac{1}{r}\dfrac{\partial u_{z}}{\partial \theta})\\ \end{aligned} \right\} \end{align} εrr=rurεθθ=rur+r1θuθεzz=zuzεrθ=εθr=21(r1θur+ruθruθ)εrz=εzr=21(zur+ruz)εzθ=εθz=21(zuθ+r1θuz)

物理方程

( ε r r ε θ θ ε z z ε r θ ε r z ε z θ ) = ( 1 E − ν E − ν E 0 0 0 − ν E 1 E − ν E 0 0 0 − ν E − ν E 1 E 0 0 0 0 0 0 1 2 G 0 0 0 0 0 0 1 2 G 0 0 0 0 0 0 1 2 G ) ( σ r r σ θ θ σ z z σ r θ σ r z σ z θ ) \begin{align} \begin{pmatrix} \varepsilon _{rr} \\ \varepsilon _{\theta\theta} \\ \varepsilon _{zz} \\ \varepsilon _{r\theta} \\ \varepsilon _{rz} \\ \varepsilon _{z\theta} \\ \end{pmatrix} = \begin{pmatrix} \dfrac{1}{E} & -\dfrac{\nu}{E} & -\dfrac{\nu}{E} & 0 & 0 & 0\\[8pt] -\dfrac{\nu}{E} & \dfrac{1}{E} & -\dfrac{\nu}{E} & 0 & 0 & 0\\[8pt] -\dfrac{\nu}{E} & -\dfrac{\nu}{E} & \dfrac{1}{E} & 0 & 0 & 0\\[8pt] 0 & 0 & 0 & \dfrac{1}{2G} & 0 & 0\\[8pt] 0 & 0 & 0 & 0 & \dfrac{1}{2G} & 0\\[8pt] 0 & 0 & 0 & 0 & 0 & \dfrac{1}{2G}\\[8pt] \end{pmatrix} \begin{pmatrix} \sigma _{rr} \\ \sigma _{\theta\theta} \\ \sigma _{zz} \\ \sigma _{r\theta} \\ \sigma _{rz} \\ \sigma _{z\theta} \\ \end{pmatrix} \end{align} εrrεθθεzzεrθεrzεzθ = E1EνEν000EνE1Eν000EνEνE10000002G10000002G10000002G1 σrrσθθσzzσrθσrzσzθ

刃型位错的应力场

建立如图1所示的刃型位错力学模型。该模型中圆筒的轴线对应刃位错的位错线,圆筒的空心部分相当于位错的中心区。该模型的位移场非常的复杂,目前我看网上也没有相关的推导,甚至连应变场也没有。查阅文献后才能给出其位移场和应变场,具体的文献,可以查阅这篇:Physical Metallurgy.http://dx.doi.org/10.1016/B978-0-444-53770-6.00016-2。
刃型位错应力场

位移场公式如下:
u r = − b 2 π ( 1 − 2 ν 2 ( 1 − ν ) sin ⁡ θ ln ⁡ r − sin ⁡ θ 4 ( 1 − ν ) − θ cos ⁡ θ ) , u θ = − b 2 π ( 1 − 2 ν 2 ( 1 − ν ) cos ⁡ θ ln ⁡ r + cos ⁡ θ 4 ( 1 − ν ) + θ sin ⁡ θ ) . } \begin{align} \left. \begin{aligned} &u_{r}=-\dfrac{b}{2\pi}\left( \dfrac{1-2\nu}{2\left( 1-\nu\right) }\sin \theta \ln r -\dfrac{\sin \theta}{4\left( 1-\nu \right) } -\theta\cos \theta \right) ,\\ &u_{\theta}=-\dfrac{b}{2\pi}\left( \dfrac{1-2\nu}{2\left( 1-\nu\right) }\cos \theta \ln r +\dfrac{\cos \theta}{4\left( 1-\nu \right) } +\theta\sin \theta \right) . \end{aligned} \right\} \end{align} ur=2πb(2(1ν)12νsinθlnr4(1ν)sinθθcosθ),uθ=2πb(2(1ν)12νcosθlnr+4(1ν)cosθ+θsinθ).

根据公式2我们可以容易地得到应变场:
ε r r = ε θ θ = − b ( 1 − 2 ν ) 4 π ( 1 − ν ) sin ⁡ θ r , ε r θ = ε θ r = b 4 π ( 1 − ν ) cos ⁡ θ r , ε z z = ε z θ = ε θ z = ε r z = ε z r = 0. } \begin{align} \left. \begin{aligned} &\varepsilon_{rr}=\varepsilon_{\theta\theta}=-\dfrac{b(1-2\nu)}{4\pi (1-\nu)}\dfrac{\sin \theta}{r},\\ &\varepsilon_{r\theta}=\varepsilon_{\theta r}=\dfrac{b}{4\pi (1-\nu)}\dfrac{\cos \theta}{r},\\ &\varepsilon_{zz}=\varepsilon_{z\theta}=\varepsilon_{\theta z}=\varepsilon_{rz}=\varepsilon_{zr}=0. \end{aligned} \right\} \end{align} εrr=εθθ=4π(1ν)b(12ν)rsinθ,εrθ=εθr=4π(1ν)brcosθ,εzz=εzθ=εθz=εrz=εzr=0.

最后由公式3给出刃位错在柱坐标系下的应力场公式:
σ r r = σ θ θ = − G b 2 π ( 1 − ν ) sin ⁡ θ r σ z z = − G b ν π ( 1 − ν ) sin ⁡ θ r σ r θ = σ θ r = G b 2 π ( 1 − ν ) cos ⁡ θ r σ z θ = σ θ z = σ r z = σ z r = 0 } \begin{align} \left. \begin{aligned} &\sigma_{rr}=\sigma_{\theta\theta}=-\dfrac{Gb}{2\pi (1-\nu)}\dfrac{\sin \theta}{r}\\ &\sigma_{zz}=-\dfrac{Gb\nu}{\pi (1-\nu)}\dfrac{\sin \theta}{r}\\ &\sigma_{r\theta}=\sigma_{\theta r}=\dfrac{Gb}{2\pi (1-\nu)}\dfrac{\cos \theta}{r}\\ &\sigma_{z\theta}=\sigma_{\theta z}=\sigma_{rz}=\sigma_{zr}=0 \end{aligned} \right\} \end{align} σrr=σθθ=2π(1ν)Gbrsinθσzz=π(1ν)Gbνrsinθσrθ=σθr=2π(1ν)Gbrcosθσzθ=σθz=σrz=σzr=0

通过以上公式,我们可以得出以下结论:

  1. 径向应力 ( σ r r ) (\sigma_{rr}) (σrr)与切向应力 ( σ θ θ ) (\sigma_{\theta\theta}) (σθθ)大小相同;
  2. θ = 0 \theta=0 θ=0时有,力 σ r r = σ θ θ = σ z z = 0 \sigma_{rr}=\sigma_{\theta\theta}=\sigma_{zz}=0 σrr=σθθ=σzz=0 σ r θ = σ θ r = G b 2 π ( 1 − ν ) r \sigma_{r\theta}=\sigma_{\theta r}=\dfrac{Gb}{2\pi (1-\nu)r} σrθ=σθr=2π(1ν)rGb

螺型位错的应力场

考虑一个长的直线状螺型位错,如图2所示。令圆柱坐标系统的 z z z轴沿着位错线的方向。因为在离开位错芯足够远的区域里胡克定律是适用的,所以它的位移场可以用弹性理论来描写。
螺型位错应力场

微元体在径向和切向是没有位移的,即 u r = u θ = 0 u_r=u_{\theta}=0 ur=uθ=0,轴向位移是方位角 θ \theta θ的函数。每经过一个完全的回路 ( θ = 2 π ) (\theta=2\pi ) (θ=2π)就得到一个大小等于柏氏矢量 b b b的轴向位移。螺型位错的轴向位移分量由下式给出:
u z = b θ 2 π \begin{align} u_z=\dfrac{b \theta}{2 \pi} \end{align} uz=2πbθ

因此,根据公式2,我们可以看到在螺型位错中只有变应分量 ϵ z θ \epsilon_{z\theta} ϵzθ不为零, 并由下式给出:
ε z θ = ε θ z = 1 2 1 r ∂ u x ∂ θ = b 4 π r \begin{align} \varepsilon_{z \theta}=\varepsilon_{\theta z }=\dfrac{1}{2} \dfrac{1}{r} \dfrac{\partial u_x}{\partial \theta}=\dfrac{b}{4 \pi r} \end{align} εzθ=εθz=21r1θux=4πrb

下面根据公式3给出螺型位错在柱坐标系下的应力场公式:
σ z θ = σ θ z = G b 2 π r σ r r = σ θ θ = σ z z = σ r θ = σ θ r = σ r z = σ z r = 0 } \begin{align} \left. \begin{aligned} &\sigma_{z\theta}=\sigma_{\theta z}=\dfrac{Gb}{2\pi r}\\ &\sigma_{rr}=\sigma_{\theta\theta}=\sigma_{zz}=\sigma_{r\theta}=\sigma_{\theta r}=\sigma_{rz}=\sigma_{zr}=0 \end{aligned} \right\} \end{align} σzθ=σθz=2πrGbσrr=σθθ=σzz=σrθ=σθr=σrz=σzr=0

通过以上公式,我们可以得出以下结论:

  1. 螺型位错周围是简单的纯剪切,应变具有径向对称性;
  2. 在包含位错线的任何晶向平面上剪应力都是 G b / 2 π r Gb/2\pi r Gb/2πr,与 θ \theta θ角无关;
  3. 螺型位错的应力场可用位错周围一定尺寸的圆柱体表示。

不过,你以为就这么简单了吗?那你就想错了以上情况是对于无限长圆柱体的。有限长螺型位错 σ z θ \sigma_{z\theta} σzθ应力分量在圆柱体的端面产生扭矩项,使得自由表面处的边界条件:
σ i j   d S j = 0 \begin{align} \sigma_{i j} \mathrm{~d} S_j=0 \end{align} σij dSj=0
没有实现,因此,应力分量 σ z θ \sigma_{z\theta} σzθ σ θ z \sigma_{\theta z} σθz必须通过确保圆柱体端面的自由应力状态的项来校正。读者可以自行尝试一下公式推导,在这篇文章接下来的内容中都默认模型是无限长的。

位错的弹性能

位错周围点阵畸变引起弹性应力场导致晶体能量的增加,这部分能量即为位错的应变能。包括两部分: E t o t a l = E c o r e + E e l E_{total}=E_{core}+E_{el} Etotal=Ecore+Eel
\begin{enumerate}
\item 位错核心能 E c o r e E_{core} Ecore:在位错核心几个原子间距 r o = 2 ∣ b ∣ = 2 b r_o=2\left| b\right| =2b ro=2b=2b以内的区域,滑移面两侧原子间的错排能即相当于位错核心能。错排能约占位错能的 1 / 10 1/10 1/10,可忽略;
\item 弹性应变能 E e l E_{el} Eel:在位错核心区以外,长程应力场作用范围所具有的能量,约占位错能的 9 / 10 9/10 9/10
\end{enumerate}

在掌握了应力和应变场的情况下,可以使用公式11计算与螺型位错和刃型位错相关的弹性能。
E e l = ∭ w d V \begin{align} E_{el}=\iiint w \mathrm{d} V \end{align} Eel=wdV
其中:
w = 1 2 σ i j ε i j \begin{align} w=\frac{1}{2} \sigma_{i j} \varepsilon_{i j} \end{align} w=21σijεij

如果这样做遇到了困难,我们还可以使用做功法计算:
d E e l = σ i j ( 2 π r d x ) d b ′ \begin{align} \mathrm{d}E_{el}=\sigma_{i j} (2\pi r\mathrm{d} x)\mathrm{d} b^{\prime} \end{align} dEel=σij(2πrdx)db
\subsection{刃型位错的应变能}
对于刃型位错(如图3),其应变能是由 σ r r , σ θ θ , σ r θ , σ θ r \sigma_{rr},\sigma_{\theta\theta},\sigma_{r\theta},\sigma_{\theta r} σrr,σθθ,σrθ,σθr贡献的,虽然有 σ z z \sigma_{zz} σzz,但是其并没有导致应变,所以对应变能没有贡献。应变能积分表达式如下:
刃型位错的圆筒模型

E E d g e = ∭ ( 1 2 σ r r ε r r + 1 2 σ θ θ ε θ θ + 1 2 σ r θ ε r θ + 1 2 σ θ r ε θ r ) d V = ∫ 0 1 d z ∫ 0 2 π r d θ ∫ r 0 R ( 1 2 σ r r ε r r + 1 2 σ θ θ ε θ θ + 1 2 σ r θ ε r θ + 1 2 σ θ r ε θ r ) d r \begin{align} E_{Edge}&=\iiint \left( \dfrac{1}{2}\sigma_{rr}\varepsilon_{rr}+\dfrac{1}{2}\sigma_{\theta\theta}\varepsilon_{\theta\theta}+\dfrac{1}{2}\sigma_{r\theta}\varepsilon_{r\theta}+\dfrac{1}{2}\sigma_{\theta r}\varepsilon_{\theta r} \right) \mathrm{d} V\\ &=\int _{0}^{1} \mathrm{d} z \int _{0}^{2\pi} r\mathrm{d} \theta \int _{r_0}^{R} \left( \dfrac{1}{2}\sigma_{rr}\varepsilon_{rr}+\dfrac{1}{2}\sigma_{\theta\theta}\varepsilon_{\theta\theta}+\dfrac{1}{2}\sigma_{r\theta}\varepsilon_{r\theta}+\dfrac{1}{2}\sigma_{\theta r}\varepsilon_{\theta r} \right) \mathrm{d}r \end{align} EEdge=(21σrrεrr+21σθθεθθ+21σrθεrθ+21σθrεθr)dV=01dz02πrdθr0R(21σrrεrr+21σθθεθθ+21σrθεrθ+21σθrεθr)dr

将公式(5),(6)带入括号中,可以计算得到刃型位错的弹性能量密度为:
∑ w = G b 2 8 π 2 ( 1 − ν ) 2 1 − 2 ν sin ⁡ 2 θ r 2 = G b 2 8 π 2 ( 1 − ν ) 2 1 − ν + ν cos ⁡ 2 θ r 2 \begin{align} \sum w&=\dfrac{Gb^2}{8\pi^2(1-\nu)^2}\dfrac{1-2\nu\sin^2 \theta}{r^2}\\ &=\dfrac{Gb^2}{8\pi^2(1-\nu)^2}\dfrac{1-\nu+\nu\cos 2\theta}{r^2} \end{align} w=8π2(1ν)2Gb2r212νsin2θ=8π2(1ν)2Gb2r21ν+νcos2θ
将其带入公式(15)就可以得到刃型位错弹性能表达式:
E E d g e = G b 2 8 π 2 ( 1 − ν ) 2 ∫ 0 1 d z ∫ 0 2 π r d θ ∫ r 0 R ( 1 − ν + ν cos ⁡ 2 θ r 2 ) d r = G b 2 8 π 2 ( 1 − ν ) 2 ∫ 0 2 π ( 1 − ν + ν cos ⁡ 2 θ ) d θ ∫ r 0 R 1 r d r = G b 2 8 π 2 ( 1 − ν ) 2 2 π ( 1 − ν ) ln ⁡ ( R r 0 ) = G b 2 4 π ( 1 − ν ) ln ⁡ ( R r 0 ) \begin{align} E_{Edge}&=\dfrac{Gb^2}{8\pi^2(1-\nu)^2}\int _{0}^{1} \mathrm{d} z \int _{0}^{2\pi} r\mathrm{d} \theta \int _{r_0}^{R} \left( \dfrac{1-\nu+\nu\cos 2\theta}{r^2} \right) \mathrm{d}r\\ &=\dfrac{Gb^2}{8\pi^2(1-\nu)^2}\int _{0}^{2\pi} (1-\nu+\nu\cos 2\theta)\mathrm{d} \theta \int _{r_0}^{R} \dfrac{1}{r} \mathrm{d}r\\ &=\dfrac{Gb^2}{8\pi^2(1-\nu)^2}2\pi (1-\nu)\ln \left( \dfrac{R}{r_0}\right) \\ &=\dfrac{Gb^2}{4\pi(1-\nu)}\ln \left( \dfrac{R}{r_0}\right) \end{align} EEdge=8π2(1ν)2Gb201dz02πrdθr0R(r21ν+νcos2θ)dr=8π2(1ν)2Gb202π(1ν+νcos2θ)dθr0Rr1dr=8π2(1ν)2Gb22π(1ν)ln(r0R)=4π(1ν)Gb2ln(r0R)

螺型位错的应变能

螺型位错应变能的推导就更加简单了如图4,读者可以自行尝试,这里给出其结果:
螺型位错的圆筒模型

E S p i r a l = μ b 2 4 π ln ⁡ R r o \begin{align} E_{Spiral}=\frac{\mu b^2}{4 \pi} \ln \frac{R}{r_o} \end{align} ESpiral=4πμb2lnroR
\subsection{混合位错的弹性能}
值得注意的是,如公式(5)(6)(8)(9)所述,螺型位错和刃型位错的应力和应变张量没有公共项,即两个张量是正交的。因此,在各向同性线性弹性的框架中,叠加原理适用,混合位错的应力和应变场通过独立计算与柏氏矢量的螺型和刃型分量相关联的应力和应变场,并将两者的贡献相加而获得。
W mix  = [ G ( b sin ⁡ α ) 2 4 π ( 1 − ν ) + G ( b cos ⁡ α ) 2 4 π ] ln ⁡ ( R r 0 ) \begin{align} W_{\text {mix }}=\left[\frac{G(b \sin \alpha)^2}{4 \pi(1-\nu)}+\frac{G(b \cos \alpha)^2}{4 \pi}\right] \ln \left(\frac{R}{\mathrm{r_0}}\right) \end{align} Wmix =[4π(1ν)G(bsinα)2+4πG(bcosα)2]ln(r0R)

张力

张力是存在于面/线缺陷的表面/界面中的,下面先给出几个概念:

  • 表面能 ( J / m 2 ) (\mathrm{J}/\mathrm{m}^2) (J/m2):单位面积表面原子相对于内部原子的能量增加。
  • 表面张力 ( N / m ) (\mathrm{N}/\mathrm{m}) (N/m):表面内使单位长度表面收缩的力。
  • 位错应变能 ( J / m ) (\mathrm{J}/\mathrm{m}) (J/m):单位长度位错(线)相对于完美晶体的能量增加。
  • 位错线张力 ( N ) (\mathrm{N}) (N):位错线内部使位错线长度收缩的力。

表面能和表面张力、位错应变能和位错线张力是同一事物的不同一侧面,两者的量纲与数值必然相同。所以以上求得的应变能也就是位错线张力。
位错线张力一段曲线状的位错线受一个指向曲率中心的力。图5表示一个长度为 S S S,曲率半径为 R R R的位错线。作用在这段位错线上的径向力是
位错线张力

力 单位长度 = 2 τ sin ⁡ θ S ≃ 2 τ θ S = 2 τ S S 2 R = τ R \begin{align} \dfrac{\text{力}}{\text{单位长度}}=\dfrac{2\tau \sin \theta}{S}\simeq \dfrac{2\tau \theta}{S}=\dfrac{2\tau }{S}\dfrac{S}{2R}=\dfrac{\tau }{R} \end{align} 单位长度=S2τsinθS2τθ=S2τ2RS=Rτ

图6绘出了作用在表面张力为 γ \gamma γ的物质的球缺表面上的径向力。作用在球缺单位面积上的力是:
表面张力

力 单位面积 = 2 π r γ sin ⁡ θ A ≃ 2 π r γ θ π r 2 = 2 π r γ π r 2 r R = 2 γ R \begin{align} \dfrac{\text{力}}{\text{单位面积}}=\dfrac{2\pi r\gamma \sin \theta}{A}\simeq \dfrac{2\pi r\gamma \theta}{\pi r^2}=\dfrac{2\pi r\gamma }{\pi r^2}\dfrac{r}{R}=\dfrac{2 \gamma }{R} \end{align} 单位面积=A2πrγsinθπr22πrγθ=πr22πrγRr=R2γ

OK!搞定!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值