基于Miracl库的中国剩余定理C语言实现

本文介绍了中国剩余定理的算法过程,并提供了基于Miracl库的C语言代码实现,适用于解决三个同余方程组的问题。文章还包含不符合模底数两两互素条件的测试数据结果。
摘要由CSDN通过智能技术生成

针对大数的中国剩余定理C语言实现

一、算法介绍

中国剩余定理又称孙子定理,是中国人在古代数学上的一点智慧果实(finally),总算是在世界数学史上找到了一个位置吧。
下面就把算法的具体过程贴出来:

关于中国剩余定理的内容介绍:
可以看到中国剩余定理就是用来求同余方程组的,前提条件是k个方程的模底数mj两两互素,然后在满足条件的情况下求M序列和M逆序列,最后求出模m的方程组解x。
在这里插入图片描述
关于算法步骤:
很清晰!!!
在这里插入图片描述

二、代码实现

话说在前头:这里只是针对三个同余方程组,aj和mj存放在一个文件里以换行符隔开,且每一个大数的位数是有限制的。如果你想计算多个同余方程组的话设置一个计数变量k就行了。

#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#include"miracl.h"

int main()
{
   
	int j = 0;
	char fileName[100];//存放aj和mj的文件名
	FILE *fd = NULL;

	miracl *mip = mirsys(5000, 10);
	big aj[3], mj[3], Mj[3], Mj_inverse[3], m, x, temp, one;

	//大数初始化
	m = mirvar(1);
	one = mirvar(1);
	x = mirvar(0);
	temp = mirvar(0);
	for (j = 0; j < 3; j++) {
   
		aj[j] = mirvar(
#include #include using namespace std; typedef int LL; typedef pair PLL; LL inv(LL t, LL p) {//求t关于p的逆元 if (t >= p) t = t%p; return t == 1 ? 1 : (p - p / t) * inv(p % t, p) % p; } LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } PLL linear(LL A[], LL B[], LL M[], int n) {//求解A[i]x = B[i] (mod M[i]),总共n个线性方程组 LL x = 0, m = 1; for (int i = 0; i < n; i++) { LL a = A[i] * m, b = B[i] - A[i] * x, d =gcd(M[i], a); if (b % d != 0) return PLL(0, -1);//答案不存在,返回-1 LL t = b / d * inv(a / d, M[i] / d) % (M[i] / d); x = x + m*t; m *= M[i] / d; } x = (x % m + m) % m; return PLL(x, m);//返回的x就是答案,m是最后的lcm值 } int main() { int n; scanf_s("%d", &n); LL a[2017], b[2017], m[2017]; for (int i = 0; i<n; i++) { scanf_s("%d%d%d", &a[i], &b[i], &m[i]); } PLL pa = linear(a, b, m, n); printf("%lld\n", pa.first); } 设计思路: 有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?” 解这题,先构造一个答案 5*7*inv(5*7, 3) % 3 = 1 3*7*inv(3*7, 5) % 5 = 1 3*5*inv(3*5, 7) % 7 = 1 然后两边同乘你需要的数 2 * 5*7*inv(5*7, 3) % 3 = 2 3 * 3*7*inv(3*7, 5) % 5 = 3 2 * 3*5*inv(3*5, 7) % 7 = 2 令 a = 2 * 5*7*inv(5*7, 3) b = 3 * 3*7*inv(3*7, 5) c = 2 * 3*5*inv(3*5, 7) 那么 a % 3 = 2 b % 5 = 3 c % 7 = 2 其实答案就是a+b+c 因为 a%5 = a%7 = 0 因为a是5的倍数,也是7的倍数 b%3 = b%7 = 0 因为b是3的倍数,也是7的倍数 c%3 = c%5 = 0 因为c是3的倍数,也是5的倍数 所以 (a + b + c) % 3 = (a % 3) + (b % 3) + (c % 3) = 2 + 0 + 0 = 2 (a + b + c) % 5 = (a % 5) + (b % 5) + (c % 5) = 0 + 3 + 0 = 3 (a + b + c) % 7 = (a % 7) + (b % 7) + (c % 7) = 0 + 0 + 2 = 2 答案a+b+c完全满足题意 但是答案,不只一个,有无穷个,每相隔105就是一个答案(105 = 3 * 5 * 7) a=2*5*7*2=140 b=3*3*7*1=63 c=2*3*5*1=30 140+63+30=233 2335 = 23 如果题目问你最小的那个答案,那就是23了。 当 1*x=2(%3) 1*x=3(%5) 1*x=2(%7) 输入: 3 1 2 3 1 3 5 1 2 7 输出: 23
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值