- 博客(747)
- 收藏
- 关注
原创 92、多领域算法研究:从飞行模拟到乳腺癌分类
本文探讨了多领域算法在飞行模拟与乳腺癌分类中的应用。在飞行模拟方面,采用多网格方法与基于台球模型的碰撞算法,实现了对复杂多体系统(如流星体碎片群)的动力学模拟,能够处理连续碰撞并观察系统重构过程,但受限于高分辨率网格带来的计算成本。在乳腺癌分类方面,提出结合粗糙集理论与混合萤火虫算法(FA)和粒子群优化(PSO)的特征选择方法,通过FAPSO和PSOFA等混合算法提升分类精度,有效应对特征冗余与不完整数据问题,助力乳腺钼靶图像的准确分类。研究展示了算法在不同科学领域的创新应用与潜力,同时指出了计算效率与临床
2025-09-30 07:25:49
4
原创 91、流星体飞行数值模拟研究
本文提出了一种考虑碰撞的流星体复杂系统动力学数值模型,结合基于系统网格的流场建模方法与多体动力学模拟,有效处理几何复杂区域的流场计算并模拟物体间的气动相互作用与碰撞行为。通过研究两个相同物体的分离问题和十个物体的系统重构过程,验证了模型在不同飞行条件下的准确性与稳定性。结果表明,该模型能准确预测分离速度并与理论解吻合良好,同时可模拟复杂系统从初始构型演化至稳定锥形或直线排列的过程,为流星体大气飞行的研究提供了有力工具。未来可拓展至烧蚀、变恢复系数等更真实场景的模拟。
2025-09-29 14:09:27
3
原创 90、实时流数据异常检测与流星体系统飞行模拟
本文探讨了实时流数据异常检测与流星体系统飞行模拟两大技术领域。在异常检测方面,结合Kafka消息系统与在线学习算法(HS-Trees和IForestASD),实现了高效、可扩展的流式异常识别,并通过Grafana实现实时可视化;在物理模拟方面,提出了一种考虑空气动力学相互作用与碰撞的数值模型,用于模拟超音速下流星体系统的动态演化,验证结果显示系统可形成稳定圆锥结构。文章还总结了两种方法的优势与挑战,并展望了未来在算法集成与跨领域应用的发展方向。
2025-09-28 11:22:48
5
原创 89、适用于同化模型数据库构建的Web GIS系统方法
本文提出了一种适用于同化模型数据库构建的Web GIS系统方法,旨在解决多维Web GIS在动画显示中因不同时空搜索导致的时间间隔差异问题。通过采用GML与SVG技术实现矢量数据的直接显示,并结合线性插值与变形技术调整时间间隔,提升了动画显示的连贯性与自然感。系统支持多种数据格式与标准,具备良好的互操作性和时空分析能力,适用于气象预报、海洋管理、城市规划等领域。实验基于GDAS同化数据验证了方法的有效性,并展示了与NVIS等工具集成的三维动画显示潜力。
2025-09-27 12:32:20
6
原创 18、蚁群优化算法的增强与性能评估
本文提出了一种改进的蚁群优化算法ADACO,通过引入自适应随机梯度下降机制,增强了算法在解决TSP问题时的收敛性和稳定性。ADACO利用历史梯度信息实现参数自适应更新,有效避免了陷入局部最优,并降低了对超参数的依赖。实验表明,该算法在多个TSPLIB基准实例上优于经典ACO及其变体(如MMAS、ACS),平均准确率提升达1%,且具有相同的时间和空间复杂度。此外,文章探讨了ADACO在物流配送、电路布线等领域的应用潜力,并指出了未来在算法融合、大规模问题处理和多目标优化方向的研究前景。
2025-09-27 06:59:00
35
原创 88、信任阶梯:构建可持续社会的新范式
本文提出‘信任阶梯’作为构建可持续社会的新范式,结合计算、秩序与社会需求,通过系统分析探讨其在道德决策、知识传播和技术创新中的作用。模型以社会责任、大数据安全、产品知识和伙伴透明度为阶梯步骤,应用于图书零售、食品和制造业等供应链场景,并提出通过数学建模、社会游戏开发和跨学科研究推动其未来发展,旨在激发社会对信任与可持续性的深层实践。
2025-09-26 15:33:16
2
原创 17、基于自适应随机梯度下降的蚁群优化算法
本文提出了一种基于自适应随机梯度下降(SGD)的蚁群优化算法(ADACO),通过将信息素更新过程视为参数优化问题,引入自适应SGD机制改进传统ACO算法。ADACO定义了损失函数与梯度计算方法,并采用Adadelta风格的自适应更新策略,解决了经典ACO收敛效率低、超参数依赖严重等问题。该算法在处理非凸、稀疏特征和避免局部最优方面表现出更强的适应性,具有良好的应用前景。
2025-09-26 15:13:22
34
原创 16、胶接接头强度预测与蚁群算法优化研究
本文研究了胶接接头强度预测与蚁群算法优化的理论、方法及应用。在强度预测方面,提出结合深度神经网络(DNN)与有限元分析(FEA)的方法,显著减少计算时间并提高预测效率;在优化算法方面,提出基于自适应梯度下降的ADACO算法,有效提升蚁群算法在旅行商问题等复杂组合优化中的性能。通过实验验证与多算法对比,展示了DNN相较于传统机器学习模型的优越性,以及ADACO在收敛速度和解质量方面的优势。进一步分析了两种技术的优势互补性,并探讨其在航空航天、汽车制造等领域的潜在应用。未来将深入研究更多影响参数并拓展算法跨领域
2025-09-25 10:24:56
37
原创 87、虚拟现实与动作捕捉训练在体育领域的应用探索
本文探讨了虚拟现实(VR)与动作捕捉技术在体育训练中的应用,重点研究铁饼、铅球和链球等投掷项目的动作分析与优化。项目采用基于MPU-6050和ESP8266的无线惯性动作捕捉系统,结合CloudMQTT数据传输与Blender 3D骨骼建模,实现运动员动作的实时虚拟再现。通过多线程优化提升帧率,并提出未来集成磁力计、升级硬件与开发一体化应用程序的发展方向,旨在为体育技术训练提供更精准、高效的解决方案。
2025-09-25 10:12:47
2
原创 15、基于机器学习算法和有限元分析的胶粘接头强度预测
本文提出了一种结合机器学习与有限元分析(FEA)的创新方法,用于预测胶粘接头的最大失效载荷并优化材料参数。通过实验验证FEA模型,利用其生成的数据训练深度神经网络(DNN),实现了高精度、低计算成本的强度预测,计算时间比纯FEA方法减少99.54%。进一步引入果蝇优化算法(FFO)进行参数优化,显著提升了搜索效率和全局寻优能力。该方法在航空航天、汽车工业和土木工程等领域具有广泛应用前景,具备高效性、准确性、灵活性和强优化能力。未来可通过扩展数据多样性、改进算法、实现多目标优化与实时监测,进一步提升模型泛化能
2025-09-24 15:59:50
8
原创 86、探索共享意向性与运动训练新技术
本文探讨了共享意向性与运动训练新技术的前沿研究。共享意向性基于量子纠缠机制,为理解生物系统的协作、社会学习及群体行为提供了新视角,并在智能系统、无接触人机交互和智能假肢等领域展现广阔应用前景。同时,结合虚拟现实与动作捕捉的运动训练技术为田径投掷等项目提供了数据驱动的训练分析手段,尽管存在延迟与漂移问题,未来通过优化算法、融合AI及拓展至教育与康复领域,有望实现更广泛的突破。
2025-09-24 12:13:04
2
原创 85、工业自动化与控制技术全解析
本文全面解析了工业自动化与控制技术的核心内容,涵盖基础概念、控制回路与系统、分布式控制系统(DCS)、建筑自动化和控制系统(BACS)、制造与工厂自动化、系统安全与诊断、通信与网络架构等多个领域。深入探讨了PLC、PAC、SCADA、DCS等系统的功能与应用,分析了工业4.0、人工智能、物联网等新兴技术在智能制造中的融合趋势。同时,文章还详细介绍了I/O系统设计、智能控制策略、网络安全防护以及建筑自动化中的HVAC与照明控制等关键技术,辅以mermaid流程图直观展示系统结构,为工业自动化领域的研究与实践提
2025-09-24 11:05:49
15
原创 85、基于共享意向性的非接触式人机系统:下一代智能假肢的概念设计
本文探讨了共享意向性在非接触式人机系统中的关键作用,特别是在智能假肢、人类认知模型及多种生物系统(如细菌、蚯蚓、蚂蚁、蜜蜂和人类胎儿)中的体现。文章分析了共享意向性的神经生物学与量子力学机制,提出其在解决初级数据输入问题、实现生物合作行为和促进人机自然交互中的潜力。同时展望了该领域的未来研究方向,包括神经机制探索、量子验证、应用开发与跨学科融合,并指出了技术、伦理与数据方面的挑战,强调共享意向性将为智能假肢与生物认知研究带来革命性进展。
2025-09-23 13:00:03
26
原创 84、工业自动化中的IMCC与SCADA系统解析
本文深入解析了工业自动化中的IMCC(智能电机控制中心)与SCADA(监控与数据采集系统)的核心特性、功能及应用领域。IMCC通过多种通信协议实现设备级网络集成,支持工业以太网连接、智能设备集成和全面诊断,广泛应用于化工、制造、污水处理等行业。SCADA系统则作为智能化监控平台,历经三代发展,具备数据采集、实时控制、报警处理和远程管理等功能,广泛用于电力、油气、水务、交通等领域。文章还介绍了SCADA的系统组成、优势及其面临的主要网络安全挑战,并提出了相应的防护措施,为工业自动化系统的高效与安全运行提供了全
2025-09-23 11:01:53
16
原创 14、基于深度迁移学习的刀具剩余使用寿命预测
本研究基于深度迁移学习方法,利用卷积神经网络(CNNs)对刀具剩余使用寿命进行预测。通过构建回归栈将预训练模型输出调整为回归任务,并引入最大均值差异(MMD)与均方误差(MSE)联合优化目标,实现源域与目标域特征分布对齐。实验比较了AlexNet、ResNet系列、SqueezeNet和InceptionV3等模型在不同优化器下的性能,结果表明ResNet-18结合ADAM优化器在准确率、MAE和MSE方面表现最优。同时分析了数据不平衡与过拟合问题对预测的影响,并提出了分类-回归结合、累积属性、参数转移、类
2025-09-23 10:55:58
6
原创 26、自然启发式算法在多领域的应用与发展
本文综述了自然启发式算法在物联网、生物医学、智慧城市规划等多个领域的广泛应用与发展前景。文章探讨了遗传算法、蚁群优化、粒子群优化、人工神经网络等典型算法的原理与应用场景,分析了其在隐私保护、资源优化、智能决策等方面的优势。同时,指出了这些算法在可扩展性、实时性、鲁棒性、可解释性及噪声数据处理方面面临的挑战,并提出了相应的应对策略。展望未来,自然启发式算法将与人工智能、边缘计算、5G和区块链等技术深度融合,推动各领域智能化与可持续发展。
2025-09-23 05:18:00
45
原创 84、基于知识的教育技术设计
本文探讨了基于知识的教育技术设计,重点介绍了WPadV4在数学、建模与仿真及编程语言教学中的应用。通过整合教学内容与信息学方法,该技术实现了教学材料的集中管理、高效发布与互动学习,支持协作式教学和多语言语料库构建。文章还展示了教育包开发流程、实际教学案例以及未来在技术优化、功能拓展和跨学科推广方面的潜力,体现了个性化、智能化教育系统的发展方向。
2025-09-22 16:05:17
3
原创 13、基于深度迁移学习的刀具健康状态估计
本研究提出了一种基于深度迁移学习的卷积神经网络(CNNs)方法,用于在有限数据条件下准确估计刀具的剩余使用寿命(RUL),以支持预测与健康管理(PHM)。通过引入归一化最大均值差异(MMD)和均方误差(MSE)联合优化的梯度下降算法,实现源领域与目标领域之间的特征分布对齐和回归精度提升。研究评估了多种预训练CNN架构(如ResNet、AlexNet、InceptionV3等)在刀具图像上的迁移性能,并通过实验确定ResNet-50表现最优。同时,针对训练策略和数据增强技术提出了实用建议,为制造业中的智能维护
2025-09-22 11:07:01
7
原创 25、自然启发式优化算法:原理、优势与应用
本文系统介绍了自然启发式优化算法的原理、分类及其在特征选择、工程应用和物联网等领域的广泛应用。文章涵盖了遗传算法、粒子群优化、布谷鸟优化等多种典型算法的工作机制,并通过Mermaid流程图展示了其迭代过程。详细分析了优化技术在提升效率、性能、安全性与可持续性等方面的显著优势,提供了算法选择策略、性能评估指标及改进融合方法。最后展望了算法在跨学科协同、自适应机制和多领域拓展方面的未来发展趋势,强调了其在推动技术创新中的重要作用。
2025-09-22 10:12:35
36
原创 83、电气控制系统中的智能控制技术与应用
本文深入探讨了电气控制系统中智能控制技术的应用,涵盖自动电压调节器(AVR)、数字励磁控制系统(ECS)、交流驱动器(VFD)和智能电机控制中心(IMCC)等关键技术。文章分析了各类系统的功能原理、智能控制方法(如PID、ANN、模糊逻辑)、系统集成优势及在工业4.0背景下的发展趋势。通过实际案例展示了智能控制在提升系统稳定性、可靠性、能效和管理效率方面的显著效果,并提供了技术实施步骤与未来展望,全面呈现了现代电气系统智能化的演进路径。
2025-09-22 10:10:03
13
原创 82、可再生能源中的智能控制与数据挖掘技术
本文深入探讨了数据挖掘与智能控制技术在太阳能、风能和燃料电池等可再生能源系统中的应用。介绍了数据挖掘中的分类、聚类、回归等方法在太阳能预测与建模中的作用,分析了风力发电系统的最大功率点跟踪(MPPT)、控制模式及模糊控制策略,并阐述了燃料电池的类型、性能挑战与智能MPPT方法。同时,文章还讨论了分布式控制系统在励磁与电压调节中的关键作用,展示了先进技术如何提升能源转换效率、系统稳定性与电网兼容性,推动可再生能源的高效可持续发展。
2025-09-21 16:24:03
15
原创 24、图像分割与优化算法的综合解析
本文深入探讨了新型图像分割技术,结合能量曲线与和谐搜索算法(HSA)提升分割效率,并通过实验验证其在多幅标准图像上的优越性能。文章系统解析了优化算法的参数调整策略,对比了约束与无约束优化的定义、区别及工程与图像处理中的实际应用,提出了多种处理约束的方法。同时,介绍了SIFT、HOG、SURF和深度学习等特征选择技术及其在图像处理中的关键作用。最后,整合图像分割、特征选择与优化算法,构建了完整的图像处理流程,并展望了未来在高效算法、多模态融合与跨领域应用等方面的发展方向。
2025-09-21 09:32:31
14
原创 83、基于知识设计的教育技术:创新与实践
本文探讨了基于知识设计的教育技术的创新与实践,分析了当前技术增强学习(TEL)和教育技术领域存在的定义模糊、理论与实践脱节等问题。文章介绍了将人类知识转化为虚拟知识的核心原理,以及通过WPad软件在本科生化学教学中的应用案例,展示了其在个性化学习、协作学习和教学资源共享方面的显著效果。同时,提出了应对现存问题的策略,包括明确概念定义、加强理论与实践结合、提升教师技术素养等,并展望了该技术在职业教育、高等教育、终身学习等领域的拓展应用。未来,人工智能、虚拟现实、大数据和区块链等新兴技术将进一步推动教育技术的深
2025-09-21 09:19:56
2
原创 23、自然启发式优化算法在图像处理中的应用与实现
本文综述了自然启发式优化算法(NIOAs)的基本概念、主要类型及其在工程、金融、机器学习、图像处理等领域的广泛应用。重点以和声搜索算法(HSA)为例,详细阐述了其在基于多级阈值的图像分割中的实现过程,包括Otsu类间方差法与Kapur熵最大化方法的原理、能量曲线的构建以及HSA的优化流程。文章还对比了两种阈值选择方法的特点,分析了自然启发式算法的优势与挑战,并展望了其与深度学习融合、多算法结合及跨领域拓展的未来发展趋势。
2025-09-20 15:49:02
31
原创 11、重型机床热误差预测的研究与实践
本文研究了基于LSTM网络的重型数控机床热误差预测方法,结合FEA分析优化传感器布局,并提出改进的灰色关联分析(iGRA)进行数据预处理以减少共线性和冗余。通过构建单层LSTM模型实现对热误差的高精度预测,并引入雾-云协同架构提升数据传输与计算效率。研究表明,该方法能有效提高加工精度和系统稳定性,为智能制造中的热误差补偿提供了可行的技术路径。
2025-09-20 14:19:30
5
原创 81、电气控制与SCADA中的分布式控制系统:智能控制的应用与发展
本文探讨了分布式控制系统在电气控制与SCADA中的广泛应用,重点分析了智能控制技术在电力系统变革、太阳能发电、励磁与电压调节、交流驱动及电机控制中的关键作用。文章介绍了多种计算智能方法如人工神经网络、模糊控制、遗传算法等在提升系统效率、稳定性与自动化水平方面的应用,并阐述了SCADA系统的架构、通信方式与安全措施。随着可再生能源的发展,智能控制与分布式系统的融合正推动电力系统向高效、可靠和可持续方向发展。
2025-09-20 12:16:26
8
原创 82、教育科技的创新实践:严肃游戏与知识驱动设计
本文介绍了一款基于旅行商问题(TSP)的严肃游戏,用于教授遗传算法,结合工作坊实践、问卷与测试评估其教学效果。结果表明,该游戏显著提升了学习者的参与度和动机,多数参与者达到Bloom分类法的高阶认知水平。同时,文章提出知识驱动的教育技术设计理念,通过‘虚拟知识’实现技术与教育内容的深度融合,并展示了其在科学写作支持中的应用。整体为教育科技的创新提供了可复用的框架与实践范例。
2025-09-20 10:06:06
2
原创 22、工业自动化优化:从数据同步到供应链管理
本文探讨了工业自动化优化的多个关键方面,包括数据同步与销售监控、交付质量提升、安全保障措施、自动化质量控制、包装优化策略以及物流与供应链优化。通过实施自动化技术与系统化流程,企业能够提高运营效率、降低成本、增强产品质量与客户满意度,在竞争激烈的市场中保持优势,并实现可持续发展。
2025-09-19 14:47:51
15
原创 81、遗传算法教学严肃游戏的设计与开发
本文探讨了基于严肃游戏的遗传算法教学设计与开发,旨在通过可视化和互动游戏机制提升学生对复杂算法(如旅行商问题TSP)的理解与学习兴趣。文章分析了教学可视化、玩家动机、成功因素及评估方法,提出结合Bloom分类法与Gagné教学模型的新教学框架,并详细描述了以团队竞争形式进行的迭代开发过程。实际应用表明,该方法显著提升了学习兴趣、理解深度和团队协作能力。未来方向包括引入更多算法、融合VR/AR技术及实现个性化学习路径,为算法教学提供了创新且有效的解决方案。
2025-09-19 14:41:17
2
原创 80、分布式控制系统(DCS)软件功能与管理信息系统解析
本文深入解析了分布式控制系统(DCS)的软件功能及其与管理信息系统(MIS)的协同作用。内容涵盖设备与系统集成、系统管理、资产优化、通用计算、高级功能以及DCS与MIS的数据交互,探讨了各模块间的协同优势,并通过实际案例展示了其在电力企业中的应用。文章还展望了DCS与MIS在智能化、云计算、物联网、标准化和安全方面的未来发展趋势,为工业自动化与信息化建设提供参考。
2025-09-19 11:58:53
17
原创 10、切削工具剩余使用寿命预测与重型数控机床热误差预测技术
本文探讨了切削工具剩余使用寿命(RUL)预测与重型数控机床热误差预测的关键技术。在RUL预测中,对比了域转换、PCA和赫斯特指数分区等数据处理方法,提出基于赫斯特指数分区与混合CNN-LSTM算法的预测模型,显著提升精度。在热误差预测方面,分析了物理建模与数据建模的演变,介绍了一种结合FEA优化传感器部署、iGRA数据预处理和LSTM建模的改进数据驱动系统,并采用雾-云架构提升效率。实际案例表明,该系统有效减少数据传输量和热误差。未来趋势包括多技术融合、自适应预测与智能化决策,为智能制造提供有力支撑。
2025-09-19 10:33:08
7
原创 9、基于Hurst指数和CNN - LSTM的刀具磨损预测研究
本研究提出了一种基于Hurst指数和CNN-LSTM混合模型的刀具磨损预测方法,利用2010年PHM会议挑战赛的CNC铣削数据集,结合切削力、振动和声学发射传感器信号,通过Hurst指数对信号进行分段以匹配刀具磨损的不同阶段。实验结果表明,基于Hurst指数的信号分区策略显著提升了CNN-LSTM模型的预测精度,综合准确率最高达88.1%,优于未分区数据及其他信号处理方法(如域特征提取和PCA降维)。同时,CNN-LSTM在计算效率和预测性能上均优于其他深度学习架构,验证了该方法在刀具剩余使用寿命(RUL)
2025-09-18 15:01:01
8
原创 80、用于教授遗传算法的严肃游戏
本文探讨了如何通过严肃游戏有效教授复杂的元启发式算法(如遗传算法)以解决旅行商问题(TSP)。文章分析了三种主流学习模型——布卢姆分类法、加涅学习模型和建构主义模型在算法教学中的优缺点,比较了不同可视化技术对学习效果的影响,并提出了结合加涅与布卢姆优势的游戏设计框架。研究强调通过动画、谜题、隐喻和VR/AR等可视化手段增强理解,利用明确目标、奖励机制和竞争元素维持学习动机,并通过实验研究与评估方法验证游戏的教学成效。最终目标是开发出兼具教育性与趣味性的高质量严肃游戏,提升STEM领域中复杂算法的教学效果。
2025-09-18 14:54:04
28
原创 21、工业自动化优化的应用与挑战
本文深入探讨了工业自动化在工厂数字化、产品流程监控和库存管理中的应用与挑战。通过分析自动化技术的优势、数字化转型的驱动力以及实时监控和智能库存系统的实施,展示了企业如何提升效率、降低成本并增强市场竞争力。同时,文章还介绍了自动化实施中的技术集成、人员技能、数据安全和文化变革等挑战,并提出应对策略。最后展望了工业自动化向智能化、柔性化、绿色化和网络化发展的未来趋势,为企业实施数字化转型提供全面参考。
2025-09-18 12:40:48
12
原创 79、工业自动化系统:APC与DCS的深入解析
本文深入解析了工业自动化中的先进过程控制(APC)与分布式控制系统(DCS)。详细介绍了APC的实施阶段、模拟方法、OPC通信应用及云服务在模型构建和维护中的作用。同时,全面阐述了DCS监控软件的功能,包括工作站软件、方面系统、可视化、存档、信息处理、报告与诊断等关键内容,展现了APC与DCS在提升工业生产效率、可靠性与可维护性方面的核心价值。
2025-09-18 09:07:50
14
原创 20、智能医疗与优化算法:机遇与挑战
本文探讨了智能医疗系统在医疗4.0背景下的发展机遇与挑战,重点分析了区块链、物联网(IoT)、云物融合(CoT)和机器学习等技术在智能医疗中的应用。文章介绍了智能合约在支付与信任建立中的作用,DBN等算法在患者行为分析中的高准确率表现,并讨论了数据安全、隐私保护及系统性能评估等关键问题。同时,提出了优化算法在资源分配中的应用流程,分析了智能医疗的成本效益,并展望了个性化医疗、远程医疗和人工智能深度融合的未来趋势。
2025-09-17 14:09:31
11
原创 78、工业控制系统中的控制、安全与先进过程控制解析
本文深入解析了工业控制系统中的控制、安全与先进过程控制(APC)技术,涵盖控制系统架构、安全标准与集成策略、APC的核心算法与应用效果,并探讨了三者之间的协同关系。文章还分析了技术发展趋势,包括智能化、网络化、集成化和绿色化方向,为工业企业优化生产效率、提升安全性与可持续发展提供实施建议。通过案例与数据表格,展示了APC在产能提升、节能降耗、质量改进等方面的显著成效。
2025-09-17 12:57:32
11
原创 WSUS与SNMP配置指南
本文介绍了如何为WSUS配置组策略对象,实现自动更新管理;详细说明了使用性能监视器监控系统资源的方法;并指导完成SNMP服务的安装与配置,包括陷阱和社区名称设置,适用于Windows服务器环境的系统管理。
2025-09-17 12:53:11
719
原创 79、说服性技术设计特征分析
本研究通过实证分析探讨了说服性系统开发模型(PSD)在加纳初中学生中的应用效果,验证了主要任务支持、对话支持、系统可信度支持和社会支持四个设计特征对行为改变的显著影响。研究发现,社会支持的影响最为突出,而对话支持相对最弱。结果为说服性技术的设计与优化提供了实践依据,并强调了在不同文化背景下推广和长期跟踪研究的重要性。
2025-09-17 12:22:14
3
原创 8、CNN-LSTM 助力刀具剩余使用寿命预测
本文提出一种基于赫斯特指数信号分割与混合CNN-LSTM算法的刀具剩余使用寿命(RUL)预测系统。通过振动、切削力和声发射传感器采集多源信号,利用赫斯特指数对信号进行阶段化分割,解决数据特征不平衡问题;结合CNN的空间特征提取能力与LSTM的时间序列建模优势,构建混合深度学习模型实现高精度RUL预测。实验结果表明,该方法在MAE和RMSE指标上优于SVR、ANN及单一深度学习模型,显著提升了预测准确性与稳定性,为智能制造中的刀具状态监测提供了有效解决方案。
2025-09-17 11:28:11
6
从概念到代码的数据科学
2025-10-01
未来技术与智能系统前沿
2025-09-30
边缘计算:从理论到实践
2025-09-28
数据驱动的智能制造
2025-09-27
仿生优化算法与应用
2025-09-23
智能工厂自动化与数字化
2025-09-24
树莓派电子项目实战指南
2025-09-24
Eleventy静态网站入门
2025-09-14
掌握Android Studio入门
2025-09-14
复杂网络中的机器学习
2025-09-10
量子机器学习与金融优化
2025-09-08
人工智能的未来之路
2025-09-07
Rust全栈开发实战
2025-09-05
AI与区块链赋能未来
2025-08-30
DevOps实践与文化转型指南
2025-08-26
集成信息系统中的质量驱动查询回答
2025-08-26
哈密顿动力系统与N体问题简介
2025-08-25
Arduino入门:50个动手项目带你快速上手
2025-08-24
JavaScript入门与实践指南
2025-08-20
Linux核心概念与实践指南
2025-08-13
Mac OS X Leopard: Beyond the Manual
2025-08-10
掌握Mac OS X和iPhone开发的Xcode工具
2025-08-09
时间约束下分布式数据库的优先级倒置处理
2025-08-08
分布式模型预测控制在全厂系统的应用
2025-08-07
Java编程:物联网、人工智能与区块链
2025-08-04
信息与通信安全:第三届国际会议精选
2025-07-27
企业安全管理中的角色工程实践
2025-07-30
编程语言理论的核心概念与实践
2025-07-23
Pascal编译器设计与实现导论
2025-06-28
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人