自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 收藏
  • 关注

原创 H指数(h-index)的实现

h-index的python 实现过程

2022-11-07 21:56:32 740 1

原创 相关性方法-2

相关性评价方法

2022-11-02 23:24:10 288 2

原创 节点重要性和筛选方法对比的两组实验过程

实验显示评定节点传播能力(1)在评价应用某种启发式方法筛选出节点影响能力的时候,通常会借助贪心方法,对节点进行传播测试,分析其传播范围。如果在图中显示(散点图),则横坐标对应于节点的评价值,例如度为3(注意不是节点序号)的节点可能包括2个节点,纵坐标对应于这两个节点的传播范围。这里的纵坐标的传播范围可以采用扩散规模表示出来:Gi=1M∑m=1Mgi(m)(1)G_{i}=\frac{1}{M}\sum_{m=1}^{M} g_{i}(m) (1)Gi​=M1​m=1∑M​gi​(m)(

2022-04-30 21:41:56 327

原创 一种较好的区分指标差异性的评价标准

一类分析评价指标差异性的方法参考文献:Fast ranking influential nodes in complex networks using a k-shell iteration factor该文献中定义区分评价指标单调性的方法为:我们期望对采用的影响力评价指标具备很好的区分度,既具有相同评价值的节点越少,评估度量就越好。该文献中,采用参考文献 [1] 中描述的指标 M 来评估不同排名度量的单调性,具体形式如下:M(R)=(1−∑r∈Rnr(nr−1)n(n−1))2M(R) =(1-\

2022-03-31 18:09:48 803

原创 肯德尔相关系数计算方法

肯德尔相关系数计算方法由影响力传播为例进行说明:我们设定信息源节点(种子节点)数目分别为1,2,3,4的情况下方法1产生的影响范围:{x1,x2,x3,x4}={2,3,4,5}方法2产生的影响范围:{y1,y2,y3,y4}={7,6,8,9}则形成元组对:{(x1,y1),(x2,y2),(x3,y3),(x4,y4)}改写成列的方式(x1,y1)(x2,y2)(x3,y3)(x4,y4)形成组合:{(x1,x2),(x1,x3),(x1,x4),(x2,x3),(x2,x4)

2022-03-18 00:12:43 6299 3

原创 图计算程序留档

计算有向图的出入度邻居# -*- coding: UTF-8 -*-import matplotlib.pyplot as pltimport networkx as nximport copyimport randomdef Getinneighbors(G,v): #计算节点入度及出度邻居 # a=[x[0] for x in G.in_edges(v)] #有向图入度邻居 a=list(G.neighbors(v)) #有向图出度邻居 return ai

2022-03-06 09:52:21 99

原创 Python数据库应用小安利

Python结合数据库开发与几个主流数据库连接1.SQL Server// 需要pymssql包,注意pycharm中该包的版本可能要选择低一些的# -*- coding: utf-8 -*-import pymssqlcon = pymssql.connect(host='localhost',user='sa',password='123456',database='Teach') # 连接到数据库,注意sql中MSSQLSERVER协议启动TCP/IP(重新启动生效),数据库sql身份

2021-12-01 21:32:05 1849

原创 Pandas中ix,loc, iloc的用法及区别

Pandas在对Series和DataFrame进行行列索引时,有三种常用的方法。其中.ix方法兼顾了.loc和.iloc的用法。为了避免用户在使用这三种方法时产生混淆,从pandas 0.20.0版本开始,官方不推荐使用.ix方法而是使用.iloc 和.loc方法。.loc()方法:(1)使用行标签和列标签,获取行、列对应的某一个值(2)选定某一个区域的值注意:.loc()方法的的取值范围都是闭区间.iloc()方法:(1)采用索引获取某一个值,且行和列中后区间为开区间(2)选定某一个区域的值

2020-08-09 12:43:22 862

原创 一种通过numpy生成矩阵计算度中心性的方法

通过生成矩阵实现度的计算度中心性计算,注意:有向图的度中心性合并计算(入度+入度)/(节点总数-1)关键是找好节点与位置的对应关系!同时考虑好矩阵一行的计算M[1]与一列M[:,1]的写法import networkx as nximport numpy as npfrom matplotlib import pyplot as pltdef nodedegree(G): #计算有向图出度中心性及无向图的度中心性 N = list(G.nodes()) M = nx.to

2020-06-30 22:53:55 1246 1

原创 社会网络数据集

分享几个社会网络数据集网址http://networkrepository.com/soc.php2.http://snap.stanford.edu/data/3.http://www-personal.umich.edu/~mejn/netdata/另外几个比较好用的分析工具Pajek和Gephi社会网络分析

2020-05-31 09:41:36 7633 2

原创 图与矩阵的转换

本部分内容的目的是使用networkx包与各种方式创建的矩阵之间实现相互转换:矩阵转图1.用numpy随机数矩阵产生图import networkx as nximport matplotlib.pyplot as pltimport numpy as np# np.random.randint(low,high,size=(m,n))产生离散均匀分布的整数,整数属于[low,high);size部分表示m行n列矩阵a=np.random.randint(0,2,size=(5,5)) #

2020-05-16 22:09:08 5775 2

原创 字典及列表类型的排序和pop删除

Python字典的排序针对字典的排序,使用sorted函数实现,具体方式如下:sorted(dic,value,reverse)dic为比较函数,value 为排序的对象(这里指键或键值),reverse:注明升序还是降序,True–降序,False–升序(默认)可以分别根据字典的key和value完成排序过程,典型的方法包括两种方式:一、按字典值value排序(默认为升序)1....

2020-05-06 17:31:29 588

转载 初次写记录--关于networkx

@TOC,初始尝试在线刷内容,转载记录练习下笔记原文链接:https://blog.csdn.net/roger_royer/article/details/81348256有向图和无向图都可以给边赋予权重,用到的方法是add_weighted_edges_from,它接受1个或多个三元组[u,v,w]作为参数,其中u是起点,v是终点,w是权重。例如: G...

2020-04-20 20:38:46 312

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除