机器学习
文章平均质量分 92
tealex
这个作者很懒,什么都没留下…
展开
-
【机器学习】最佳入门学习资源
这是一篇很难写的文章,因为我希望这篇文章能对学习者有所启发。我在空白页前坐下,并且问自己了一个很难的问题:什么样的库、课程、论文和书籍对于机器学习的初学者来说是最好的。文章里到底写什么、不写什么,这个问题真的让我很烦恼。我必须把自己当做一个程序员和一个机器学习的初学者,站在这个角度去考虑最合适的资源。我找出了每个类型中最适合的资源。如果你是一个真正的初学者,并且乐意于开始了解机器学翻译 2016-05-25 16:11:16 · 497 阅读 · 0 评论 -
【机器学习】程序员初学机器学习的四种方式
学习机器学习有很多方法,大多数人选择从理论开始。如果你是个程序员,那么你已经掌握了把问题拆分成相应组成部分及设计小项目原型的能力,这些能力能帮助你学习新的技术、类库和方法。这些对任何一个职业程序员来说都是重要的能力,现在它们也能用在初学机器学习上。要想有效地学习机器学习你必须学习相关理论,但是你可以利用你的兴趣及对知识的渴望,来激励你从实际例子学起,然后再步入对算法的数学理解。翻译 2016-05-25 16:17:34 · 532 阅读 · 0 评论 -
【机器学习】问题的十个实例
机器学习是什么?这个问题的答案可以参考权威的机器学习定义,但是实际上,机器学习是由它所解决的问题定义的。因此,理解机器学习最好的方式是观察一些实例。首先来看一些现实生活中众所周知和理解的机器学习问题的实例,然后讨论标准的机器学习问题的分类(命名系统),学习如何辨别一个问题是属于哪种标准案例。这样做的意义是,了解所面对的问题类型,我们就可以思考所需要的数据和可尝试的算法。机器学习问题转载 2016-05-25 16:24:32 · 585 阅读 · 0 评论 -
【机器学习】有趣的机器学习:最简明入门指南
听到人们谈论机器学习的时候,你是不是对它的涵义只有几个模糊的认识呢?你是不是已经厌倦了在和同事交谈时只能一直点头?让我们改变一下吧!本指南的读者对象是所有对机器学习有求知欲但却不知道如何开头的朋友。我猜很多人已经读过了“机器学习”的维基百科词条,倍感挫折,以为没人能给出一个高层次的解释。本文就是你们想要的东西。本文目标在于平易近人,这意味着文中有大量的概括。但是谁在乎这些呢?只要能转载 2016-06-11 14:37:00 · 700 阅读 · 0 评论 -
卷积神经网络(CNN)新手指南
卷积神经网络(Convolutional Neural Network,CNN)新手指南引言卷积神经网络:听起来像是生物与数学还有少量计算机科学的奇怪结合,但是这些网络在计算机视觉领域已经造就了一些最有影响力的创新。2012年神经网络开始崭露头角,那一年Alex Krizhevskyj在ImageNet竞赛上(ImageNet可以算是竞赛计算机视觉领域一年一转载 2016-07-30 22:16:35 · 6768 阅读 · 5 评论 -
关于深度学习入门需要掌握的技能
如果你想进入这一领域,你应该首先学习 Python。尽管这一领域还支持其它很多语言,但 Python 是应用范围最广而且最简单的一个。但是为什么要选择 Python 呢——毕竟 Python 速度这么慢?因为大多数的深度学习的库都使用的是符号式语言(symbolic language)方法而非命令式语言(imperative language)方法。命令式编程:命令原创 2017-07-19 09:24:57 · 2655 阅读 · 0 评论 -
Caffe和MXnet 两个开源库对比
首先Github上caffe2的star为5.2k,mxnet为10.4k。本文首先对两个库有个整体的比较,再针对一些两者设计的不同数据结构、计算方式、gpu 的选择方式等方面做了比较详细的讨论。表格 1 是两者的一些基本情况的记录和比较。其中示例指的是官方给出的 example 是否易读易理解,这个表主观因素比较明显,仅供参考。库名称开发语言支原创 2017-07-24 10:43:52 · 807 阅读 · 0 评论 -
MXNet 符号编程
构成符号:符号对我们想要进行的计算进行了描述, 下图展示了符号如何对计算进行描述. 下图定义了符号变量 A, 符号变量 B, 生成了符号变量 C, 其中, A, B 为参数节点, C 为内部节点! mxnet.symbol.Variable 可以生成参数节点, 用于表示计算时的输入.一个 Symbol 具有的属性和方法如下图所示:对神经网络进行配置:原创 2017-09-28 15:40:01 · 835 阅读 · 0 评论 -
CV 领域的最美情话
CV 领域的最美情话Clustering-- 聚类最好不相见,如此便可不相恋。最好不相知,如此便可不相思。LDA-- 文档主题生成模型一个人需要隐藏多少秘密,才能巧妙地度过一生。Multi-Task Learning-- 多任务学习曾虑多情损梵行,入山又恐别倾城,世间安得双全法,不负如来不负卿。Fine-Tuning你如果认识从前的我,也许你会原谅现在的我。...转载 2018-09-30 14:53:41 · 503 阅读 · 0 评论