Python使用矩阵分解法推荐系统找到类似的音乐

文章介绍了如何使用Python进行矩阵分解,如SVD和ALS,来构建音乐推荐系统。通过将用户-艺术家播放计数矩阵降低到低秩近似,计算相关艺术家并展示在LSA和ALS方法下对数据的解释能力。尽管LSA在揭示数据结构方面有所帮助,但ALS在生成相关艺术家推荐上表现更优。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 这篇文章是如何使用几种不同的矩阵分解算法计算相关艺术家。最近我们被客户要求撰写关于的矩阵分解法推荐系统研究报告,包括一些图形和统计输出。代码用Python编写,以交互方式可视化结果。

加载数据

这可以使用Pandas加载到稀疏矩阵中:

# read in triples of user/artist/playcount from the input datasetdata = pandas.read_table("usersha1-artmbid-artname-plays.tsv",

                        usecols=[0, 2, 3],

                        names=['user', 'artist', 'plays'])# map each artist and user to a unique numeric valuedata['user'] = data['user'].astype("category")data['artist'] = data['artist'].astype("category")# create a sparse matrix of all the artist/user/play triplesplays = coo_matrix((data['plays'].astype(float),

                  (data['artist'].cat.codes,

                    data['user'].cat.codes)))

这里返回的矩阵有300,000名艺术家和360,000

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值