R语言中Gibbs抽样的Bayesian贝叶斯简单线性回归

本文介绍了如何在R语言中使用Gibbs抽样进行贝叶斯简单线性回归分析,通过贝叶斯模型、条件后验分布和Gibbs采样算法,展示如何从数据中推断模型参数,并讨论了网格方法的优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

贝叶斯分析的许多介绍都使用了相对简单的教学实例(例如,根据伯努利数据给出成功概率的推理)。虽然这很好地介绍了贝叶斯原理,但是这些原则的扩展并不是直截了当的。最近我们被客户要求撰写关于贝叶斯简单线性回归的研究报告,包括一些图形和统计输出。

这篇文章将概述这些原理如何扩展到简单的线性回归。我将导出感兴趣参数的后验条件分布,给出用于实现Gibbs采样器的R代码,并提出所谓的网格点方法。

 

 视频:线性回归中的贝叶斯推断与R语言预测工人工资数据案例

贝叶斯推断线性回归与R语言预测工人工资数据

,时长09:58

贝叶斯模型

假设我们观察数据

对于我们的模型是

有兴趣的是作出推论

如果我们在方差项之前放置正态前向系数和反伽马,那么这个数据的完整贝叶斯模型可以写成:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值