R语言特征选择——逐步回归

本文介绍了R语言中的变量选择方法,包括所有可能的回归分析,最佳子集回归,以及逐步前进回归的详细过程,特别强调了逐步前进回归在基于p值选择预测变量中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 
变量选择方法

所有可能的回归

model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_all_subset(model)

## # A tibble: 15 x 6
##    Index     N      Predictors `R-Square` `Adj. R-Square` `Mallow's Cp`
##                                          
##  1     1     1              wt    0.75283         0.74459      12.48094
##  2     2     1            disp    0.71834         0.70895      18.12961
##  3     3     1              hp    0.60244         0.58919      37.11264
##  4     4     1            qsec    0.17530         0.14781     107.06962
##  5     5     2           hp wt    0.82679         0.81484       2.36900
##  6     6     2         wt qsec    0.82642         0.81444       2.42949
##  7     7     2         disp wt    0.78093         0.76582       9.87910
##  8     8     2         disp hp    0.74824         0.73088      15.23312
##  9     9     2       disp qsec    0.72156         0.70236      19.60281
## 10    10     2         hp qsec    0.63688         0.61183      33.47215
## 11    11     3      hp wt qsec    0.83477         0.81706       3.06167
## 12    12     3      disp hp wt    0.82684         0.80828       4.36070
## 13    13     3    disp wt qsec    0.82642         0.80782       4.42934
## 14    14     3    disp hp qsec    0.75420         0.72786      16.25779
## 15    15     4 disp hp wt qsec    0.83514         0.81072       5.00000

plot方法显示了所有可能的回归方法的拟合  。

model <- lm(mpg ~ disp + hp + 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值