原文链接:http://tecdat.cn/?p=27246
此示例说明如何从 VEC( q ) 模型生成 Monte Carlo 预测。该示例将生成的预测与最小均方误差 (MMSE) 预测和来自VEC( q ) 模型的 VAR( _q_ +1) 模型的预测进行比较。
假设具有 H1 Johansen 形式的 VEC(2) 模型恰当地描述了由 1954 年至 1994 年的年度短期、中期和长期债券利率组成的 3D 多元时间序列的动态。
加载和预处理数据
加载 数据集。
Td = size(Ya,1)
numSdsrfiess = size(sY,2)
在同一图中绘制序列。
plot(dastdes,Y,'LineadaassWidth',2)
xlabel 'Yeasdar';
ylabel 'Perasdacent';legend(ndaamsess,'Lodcatsion','NW')
估计 VEC 模型
创建协整等级为 2 的 3D VEC(2) 模型。
nuassdamLags = 2;ras = 2;Maddl = vecasm(nuassmSeriaes,dasr,asdnuamLsags);
估计 VEC(2) 模型。
EssasdtMasl = esastimdate(Masddl,Yas);
默认情况下, estimate
应用 H1 Johansen 形式并使用前 q + 1 = 3 个观测值作为预采样数据。
生成蒙特卡洛预测
使用 . 从估计的 VEC 模型生成 10 年的蒙特卡罗预测 simulate
。提供最新的三行数据来初始化预测,并指定生成 1000 条路径。
numaPaddtfhs = 1000;hsoriszosn =