生存分析模型的时间依赖性ROC曲线可视化

本文探讨了在生存分析中如何利用时间相关的ROC曲线来评估预测模型的性能。介绍了累积病例和新发病例两种ROC定义,并通过R语言进行可视化分析,展示其在不同时间点的预测效果。在数据实例中,发现累积病例ROC在早期预测效果较好,而新发病例ROC揭示了随着时间推移,风险分数的重要性可能下降。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文链接:http://tecdat.cn/?p=20650 

人们通常使用接收者操作特征曲线(ROC)进行二元结果逻辑回归。但是,流行病学研究中感兴趣的结果通常是事件发生时间。使用随时间变化的时间相关ROC可以更全面地描述这种情况下的预测模型。

时间相关的ROC定义

令 Mi为用于死亡率预测的基线(时间0)标量标记。 当随时间推移观察到结果时,其预测性能取决于评估时间 _t_。直观地说,在零时间测量的标记值应该变得不那么相关。因此,ROC测得的预测性能(区分)是时间_t_的函数 。 

累积病例

累积病例/动态ROC定义了在时间_t_ 处的阈值_c_处的 灵敏度和特异性,  如下所示。

c5b179dba6479b21b0fdc17dbbc676a1.png

累积灵敏度将在时间_t_之前死亡的视为分母(疾病),而将标记值高于 _c_ 的作为真实阳性(疾病阳性)。动态特异性将在时间_t_仍然活着作为分母(健康),并将标记值小于或等于 _c_ 的那些作为真实阴性(健康中的阴性)。将阈值 _c_ 从最小值更改为最大值会在时间_t_处显示整个ROC曲线 。

新发病例

新发病例ROC1在时间_t_ 处以阈值 _c_定义灵敏度和特异性,  如下所示。

ffa8ff5bfe63bd7a658cf9130ff0fa5b.png

累积灵敏度将在时间_t处_死亡的人  视为分母(疾病),而将标记值高于 _Ç_ 的人视为真实阳性(疾病阳性)。

数据准备

我们以数据 包中的 ovarian dataset3 survival为例。事件发生的时间就是死亡的时间。Kaplan-Meier图如下。

## 变成data_frame
data <- as_data_frame(data)
## 绘图
plot(survfit(Surv(futime, fustat) ~ 1,
                   data = data)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值