R语言GARCH族模型:正态分布、t、GED分布EGARCH、TGARCH的VaR分析股票指数

本文利用R语言探讨GARCH族模型,包括GARCH(1,1)、EGARCH、GJR-GARCH和APARCH,分析股票型券商理财指数收益率,进行正态性、自相关性、异方差性和平稳性检验,以计算VaR。数据表明序列非正态分布,存在自相关和ARCH效应,适合用条件异方差模型建模。" 16339553,1113818,C# 中的数值转换:从字符串到字节数组,"['C#编程', '数据类型转换', '串口通信', '数值处理', 'BitConverter']

全文链接:http://tecdat.cn/?p=31023

如何构建合适的模型以恰当的方法对风险进行测量是当前金融研究领域的一个热门话题点击文末“阅读原文”获取完整代码数据)。

VaR方法作为当前业内比较流行的测量金融风险的方法,具有简洁,明了的特点,而且相对于方差来讲,更多的将投资人的损失作为风险具有更好的合理性。

我们和一位客户讨论如何在R软件中处理GARCH族模型。

数据的选取

本文选取Wind资讯发布的股票型券商理财指数作为数据处理对象。选取的时间期间为2011年1月4日至2015年11月24日,共1187个交易日。该指数基日为2007年12月31日,基点为1000点。

13d8d0035e0e5e51153313a1b87e0f27.png

收益率的计算

采用对数收益率对指数收盘点位进行计算,表达式为

56958b28999eefabcae4df8e110f5324.png

记为序列 。由图观察可知,该收益率序列存在波动聚集现象。

clpr<-stock$Clsprc
yield<-diff(log(clpr))
ts.plot(yield)

2392132b87fea2929740d78dd079b854.png

基本特征分析

对序列 进行基本统计分析,结果如表所示:

summary(yield)
sd(yield)
var(yield)

表 指数日收益率基本统计表****

Min. 1st Qu. Median Mean 3rd Qu. Max. Sd skewness' kurtosis
-0.03517 -0.00389 0.0003749 0.0001963 0.00473 0.03348 0.008163353 -0.4018462 2.169439

由表可知,收益率序列 的最小值为-0.03517,最大值为0.03348,平均值为0.0001963,标准差为0.008163353。偏度为-0.4018462,表现为右偏。峰度为2.169439,该分布比正态分布更陡峭。

1、正态性检验

对指数的日收益率序列进行正态性检验。检验方法采用Jarque-Bera统计量。检验结果显示Jarque-Bera统计量为261.3839,P值接近0,拒绝对数收益率服从正态分布的原假设,表明序列为非正态分布。

表 Jarque-Bera检验结果

检验方法 统计量 P值
Jarque-Bera 261.3839 < 2.2e-16

为了进一步探究序列 的分布形态,对样本数据作直方图、QQ图。由图可见,该收益率序列的尾部更长更厚,且其分布存在明显的不对称的现象,为非正态分布。

e69023d148830e159910df353475b57b.png

03befaf41219f9f889cde86c8a23efe0.png

2、自相关性检验

对指数的日收益率序列的自相关性进行检验。检验方法采用Ljung-Box检验。表中LB2(12)指滞后期为12的收益率平方的Ljung-Box统计量,该统计量在无序列相关的零假设下,服从自由度为12的 分布。具体检验结果如下:收益率平方的Ljung-Box统计量为34.1853,P值为0.0006306,拒绝无自相关的零假设,表明收益率的平方存在自相关现象。

表 Ljung-Box检验结果

检验方法 统计量 P值
LB2(12) 34.1853 0.0006306

为了进一步探究序列的自相关性,对序列作ACF、PACF图。由图可见,该收益率序列存在自相关现象。

b8fb1e7424aea663829ef7b1b6773a36.png

b3de31938b47bd0e4673283eafe8caa4.png

3、异方差性检验

对指数的日收益率序列进行异方差性检验。检验方法采用ARCH-LM检验。表中LM(12)指ARCH效应的拉格朗日乘数检验,在没有ARCH效应的零假设下,统计量服从自由度为12的 分布。具体检验结果如下:LM统计量为170.9818,P值接近0,故拒绝无ARCH效应的零假设,表明收益率序列存在ARCH效应。

表 ARCH-LM检验结果

检验方法 统计量 P值
LM(12) 170.9818 < 2.2e-16

4、平稳性检验

在时间序列模型中,序列的平稳性会直接影响到模型的拟合效果,非平稳的序列容易产生谬误回归(Spurious Regression)。本节将采用 ADF 检验来对收益率序列进行单位根检验。检验结果显示Dickey –Fuller值为-9.7732(滞后10阶),P值小于0.01,故拒绝存在单位根的原假设,认为该收益率序列是平稳的。


表 ADF检验结果

检验方法 统计量 P值
ADF -9.7732 <0.01

综上,收益率序列存在明显的尖峰厚尾效应,JB检验同样否认了收益率服从正态分布的假设。LM检验表明收益率存在ARCH效应,而LB检验表明收益率的平方存在自相关现象,因此可以采用条件异方差模型来分析收益率序列的波动特性

GARCH族模型的建立

本文将分别采用基于正态分布、

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值