全文链接:https://tecdat.cn/?p=32981
气候变化和空气污染对现代社会产生了越来越大的影响。在这种背景下,研究气象和空气污染之间的关系以及其对PM2.5浓度的影响变得非常重要(点击文末“阅读原文”获取完整代码数据)。
相关视频
为了更好地理解和解释这些关系,广义加性混合模型(GAMM)成为一种强大的工具。
长沙作为湖南省的省会城市,其气象条件和空气质量一直备受关注。通过分析长沙地区的气象数据、空气污染指标和PM2.5浓度,可以更加全面地了解该地区的空气质量状况,并揭示气象因素对其变化的影响。
本研究旨在使用R语言中的广义加性混合模型(GAMM)方法,帮助客户来探索长沙地区气象因素与空气污染之间的关系,并进一步研究它们对PM2.5浓度变化的影响。我们将采集长沙地区的逐日气象数据、空气污染指标以及PM2.5浓度数据,应用GAMM模型进行分析。
在分析过程中,我们将考虑多种气象因素,如温度、湿度、风速等,并结合空气污染指标,如PM10、SO2、NO2等,来建立相应的GAMM模型。通过显著性检验,我们将评估各个因素对PM2.5浓度的影响程度,并进一步进行逐日变化的可视化分析,以呈现其动态变化规律。
查看数据
读取数据
airquality=read.csv("长沙气象站逐日气象+空气污染 数据.csv")
Region=read.csv("长沙市年各个站点的PM2.5 每日浓度.csv",skip=1)
Table 2. Significance tests of PM2.5levels for different season, region, daytime and day of week. 对不同季节、地区、白天和周日的PM2.5水平进行显著性检验。
这段内容提到了对不同季节、地区、白天和周日的PM2.5水平进行显著性检验。显著性检验是一种统计方法,用于确定两个或多个样本之间是否存在显著差异。
在这个情境中,研究人员可能希望了解不同季节、地区、白天和周日的PM2.5水平是否存在显著差异。PM2.5是指空气中直径小于或等于2.5微米的颗粒物,它对人体健康和环境质量有重要影响。
为了进行显著性检验,研究人员可能会收集来自不同季节、地区、白天和周日的PM2.5水平数据,并使用统计方法来比较这些数据。常用的显著性检验方法包括t检验、方差分析和卡方检验等。
通过进行显著性检验,研究人员可以确定不同季节、地区、白天和周日的PM2.5水平是否存在显著差异,从而为环境保护和公共健康管理提供重要的科学依据。
Season
kruskal.test(PM2.5.ug.m3. ~ Season, data = airquality)
Region
Daytime
Season
pairwise.t.tes=="summ