R语言广义加性混合模型(GAMM)分析长沙气象因子、空气污染、PM2.5浓度、显著性检验、逐日变化可视化...

该博客利用R语言的广义加性混合模型(GAMM)分析长沙地区气象因素(如温度、湿度、风速等)对PM2.5浓度的影响,通过显著性检验揭示不同季节、地区、白天和周日的PM2.5水平差异,并展示逐日变化的可视化结果,为理解气象条件与空气污染的关系提供科学依据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全文链接:https://tecdat.cn/?p=32981

气候变化和空气污染对现代社会产生了越来越大的影响。在这种背景下,研究气象和空气污染之间的关系以及其对PM2.5浓度的影响变得非常重要点击文末“阅读原文”获取完整代码数据)。

相关视频

为了更好地理解和解释这些关系,广义加性混合模型(GAMM)成为一种强大的工具。

长沙作为湖南省的省会城市,其气象条件和空气质量一直备受关注。通过分析长沙地区的气象数据、空气污染指标和PM2.5浓度,可以更加全面地了解该地区的空气质量状况,并揭示气象因素对其变化的影响。

本研究旨在使用R语言中的广义加性混合模型(GAMM)方法,帮助客户来探索长沙地区气象因素与空气污染之间的关系,并进一步研究它们对PM2.5浓度变化的影响。我们将采集长沙地区的逐日气象数据、空气污染指标以及PM2.5浓度数据,应用GAMM模型进行分析。

在分析过程中,我们将考虑多种气象因素,如温度、湿度、风速等,并结合空气污染指标,如PM10、SO2、NO2等,来建立相应的GAMM模型。通过显著性检验,我们将评估各个因素对PM2.5浓度的影响程度,并进一步进行逐日变化的可视化分析,以呈现其动态变化规律。

查看数据

9a4815e86d9aa1faf7edd44285cf9b86.png

c1a35b4f5e48c929e83c7bafb1ea84c0.png

读取数据

airquality=read.csv("长沙气象站逐日气象+空气污染 数据.csv")  
  
Region=read.csv("长沙市年各个站点的PM2.5 每日浓度.csv",skip=1)

6a9b17125b4cd64241b5729bfac5da03.png

c8e36245d8217b1809546485632e6d57.png

Table 2. Significance tests of PM2.5levels for different season, region, daytime and day of week. 对不同季节、地区、白天和周日的PM2.5水平进行显著性检验。

这段内容提到了对不同季节、地区、白天和周日的PM2.5水平进行显著性检验。显著性检验是一种统计方法,用于确定两个或多个样本之间是否存在显著差异。

在这个情境中,研究人员可能希望了解不同季节、地区、白天和周日的PM2.5水平是否存在显著差异。PM2.5是指空气中直径小于或等于2.5微米的颗粒物,它对人体健康和环境质量有重要影响。

为了进行显著性检验,研究人员可能会收集来自不同季节、地区、白天和周日的PM2.5水平数据,并使用统计方法来比较这些数据。常用的显著性检验方法包括t检验、方差分析和卡方检验等。

通过进行显著性检验,研究人员可以确定不同季节、地区、白天和周日的PM2.5水平是否存在显著差异,从而为环境保护和公共健康管理提供重要的科学依据。

Season

kruskal.test(PM2.5.ug.m3. ~ Season, data = airquality)

09e854e255079b6da4e4f0ad6274caef.png

Region

3d8c5aa14afa03e2bee39799da97f795.png

Daytime

9aa9b29e75d7662f1195b1d44f93a6a7.png

Season

pairwise.t.tes=="summ

306ff0bf08aa4b0f01a711aafa2323cd.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值