聚类建模对智能助眠灯市场营销分析

本文介绍了如何通过市场调查、数据分析,尤其是R语言中的聚类分析(如LDA)和消费者行为模型,精准定位目标客户并预测新产品的市场份额。通过特征转换和竞品分析,提出针对在校大学生和年轻白领的助眠灯产品策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全文链接:https://tecdat.cn/?p=34532

分析师:Yue Yu

如何精准定位目标客户,准确量化客户需求来开发新的产品组合,并预测其可能的市场份额点击文末“阅读原文”了解更多)。

相关视频

解决方案

任务/目标

根据零售业务营销要求,运用多种数据源分析对客户给出产品性能组合的建议。

数据源准备

搜集除已有销量数据之外的额外信息包括对潜在消费者进行市场调查,收集其基本信息(地点、年龄、可支配收入等)及其对产品的购买欲望,对产品各维度性能的重视程度以及对产品功能的重要性排序,再在搜集的数据基础上进行预处理。收集现有的产品功能以及市面上相同种类竞品拥有的产品功能。

有了数据,但是有一部分特征是算法不能直接处理的,还有一部分数据是算法不能直接利用的。

特征转换

潜在消费者地区。需要把地区转变成到一线、新一线、二线、三四线伪变量。

产品特征。从产品信息表里面可以得到款式,颜色,质地以及这款产品是否是限量版等。然而并没有这些变量。这就需要我们从产品名字抽取这款产品的上述特征。

清洗存在NA以及非目标市场的客户信息(如退休人员)

建模

对通过消费需求调查得到的消费者对产品功能的选择行为做出分层聚类分析,得到四类人群。再根据其中主要的两类人群进行了联合分析,得到各产品性能的价值,最后通过分析竞品已有特征和我们预计给出的新功能组合产品进行模拟预测得到预计的市场份额,给出合理性的建议。

在此案例中,通过碎石图得到聚类种类为4,其可视化图形如下:

21bd4e39b3d116335429bbcc017b9f19.png

可以看出,我们的目标消费者主要面向在校大学生以及工作3年以内的白领。对于功能需求的四个重要的标签分布为助眠灯光,助眠香薰,蓝牙连接,睡眠智能预测,舒压呼吸。


点击标题查阅往期内容

7375ed27ee90d6e81ccd12430079d0c7.png

数据分享|R语言聚类、文本挖掘分析虚假电商评论数据:K-MEANS(K-均值)、层次聚类、词云可视化

outside_default.png

左右滑动查看更多

outside_default.png

01

4c47e8423dfe8d2c3ff2c823ff499da8.png

02

ef48e515847de99c3588cab5027fbc3f.png

03

599f2d981b17d59ae32740ab2b7e6473.png

04

8b210db2b5dec4eea06c93d457fb8892.jpeg

随后进行的conjoint分析结果如下:

07663956e643aab7cd7cc1c002380010.png

7389f7cdb844d7c47c7ec7e64abdb46d.png

最后预测得到的市场份额如下:

9a84b2290898e77b3019ad872c085ed9.png

因新的产品组合预测可以12.5%的同类产品市场份额,因此建议推出拥有助眠灯光,睡眠智能预测,舒压呼吸功能组合的新产品。

关于分析师

03da2d790b942075473325ccd8aa831c.png

在此对Yue Yu对本文所作的贡献表示诚挚感谢,她专注数理金融、数据建模等领域。擅长R语言。


d7a7697c0f3df762dc42caf977e037e6.jpeg

点击文末“阅读原文”

了解更多。

本文选自《聚类建模对智能助眠灯市场营销分析》。

d864468b492550f88b30081466dc9890.jpeg

e3fa175451115cfe3264018200b0a8e2.png

点击标题查阅往期内容

【视频】文本挖掘:主题模型(LDA)及R语言实现分析游记数据

NLP自然语言处理—主题模型LDA案例:挖掘人民网留言板文本数据

Python主题建模LDA模型、t-SNE 降维聚类、词云可视化文本挖掘新闻组数据集

自然语言处理NLP:主题LDA、情感分析疫情下的新闻文本数据

R语言对NASA元数据进行文本挖掘的主题建模分析

R语言文本挖掘、情感分析和可视化哈利波特小说文本数据

Python、R对小说进行文本挖掘和层次聚类可视化分析案例

用于NLP的Python:使用Keras进行深度学习文本生成

长短期记忆网络LSTM在时间序列预测和文本分类中的应用

用Rapidminer做文本挖掘的应用:情感分析

R语言文本挖掘tf-idf,主题建模,情感分析,n-gram建模研究

R语言对推特twitter数据进行文本情感分析

Python使用神经网络进行简单文本分类

用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类

R语言文本挖掘使用tf-idf分析NASA元数据的关键字

R语言NLP案例:LDA主题文本挖掘优惠券推荐网站数据

Python使用神经网络进行简单文本分类

R语言自然语言处理(NLP):情感分析新闻文本数据

Python、R对小说进行文本挖掘和层次聚类可视化分析案例

R语言对推特twitter数据进行文本情感分析

R语言中的LDA模型:对文本数据进行主题模型topic modeling分析

R语言文本主题模型之潜在语义分析(LDA:Latent Dirichlet Allocation)

R语言对NASA元数据进行文本挖掘的主题建模分析

R语言文本挖掘、情感分析和可视化哈利波特小说文本数据

Python、R对小说进行文本挖掘和层次聚类可视化分析案例

用于NLP的Python:使用Keras进行深度学习文本生成

长短期记忆网络LSTM在时间序列预测和文本分类中的应用

用Rapidminer做文本挖掘的应用:情感分析

R语言文本挖掘tf-idf,主题建模,情感分析,n-gram建模研究

R语言对推特twitter数据进行文本情感分析

Python使用神经网络进行简单文本分类

用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类

R语言文本挖掘使用tf-idf分析NASA元数据的关键字

R语言NLP案例:LDA主题文本挖掘优惠券推荐网站数据

Python使用神经网络进行简单文本分类

R语言自然语言处理(NLP):情感分析新闻文本数据

Python、R对小说进行文本挖掘和层次聚类可视化分析案例

R语言对推特twitter数据进行文本情感分析

R语言中的LDA模型:对文本数据进行主题模型topic modeling分析

R语言文本主题模型之潜在语义分析(LDA:Latent Dirichlet Allocation)

1e4938fe49db847f0f00db9f08d13af3.png

08ddf23f8ade35b2d03b735fff9e5e34.jpeg

d46e4c9ae9f466a54f68dc9492d43b7c.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值